Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2x^{2}=-3x+4
Subtract 2x^{2} from both sides.
x-2x^{2}+3x=4
Add 3x to both sides.
4x-2x^{2}=4
Combine x and 3x to get 4x.
4x-2x^{2}-4=0
Subtract 4 from both sides.
-2x^{2}+4x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16-32}}{2\left(-2\right)}
Multiply 8 times -4.
x=\frac{-4±\sqrt{-16}}{2\left(-2\right)}
Add 16 to -32.
x=\frac{-4±4i}{2\left(-2\right)}
Take the square root of -16.
x=\frac{-4±4i}{-4}
Multiply 2 times -2.
x=\frac{-4+4i}{-4}
Now solve the equation x=\frac{-4±4i}{-4} when ± is plus. Add -4 to 4i.
x=1-i
Divide -4+4i by -4.
x=\frac{-4-4i}{-4}
Now solve the equation x=\frac{-4±4i}{-4} when ± is minus. Subtract 4i from -4.
x=1+i
Divide -4-4i by -4.
x=1-i x=1+i
The equation is now solved.
x-2x^{2}=-3x+4
Subtract 2x^{2} from both sides.
x-2x^{2}+3x=4
Add 3x to both sides.
4x-2x^{2}=4
Combine x and 3x to get 4x.
-2x^{2}+4x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=\frac{4}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=\frac{4}{-2}
Divide 4 by -2.
x^{2}-2x=-2
Divide 4 by -2.
x^{2}-2x+1=-2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-1
Add -2 to 1.
\left(x-1\right)^{2}=-1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-1=i x-1=-i
Simplify.
x=1+i x=1-i
Add 1 to both sides of the equation.