Solve for x
x = \frac{\sqrt{34} + 4}{3} \approx 3.276983965
x=\frac{4-\sqrt{34}}{3}\approx -0.610317298
Graph
Share
Copied to clipboard
x=2\left(x^{2}-6x+9\right)-\left(3-x\right)\left(x+8\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x=2x^{2}-12x+18-\left(3-x\right)\left(x+8\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
x=2x^{2}-12x+18-\left(-5x+24-x^{2}\right)
Use the distributive property to multiply 3-x by x+8 and combine like terms.
x=2x^{2}-12x+18+5x-24+x^{2}
To find the opposite of -5x+24-x^{2}, find the opposite of each term.
x=2x^{2}-7x+18-24+x^{2}
Combine -12x and 5x to get -7x.
x=2x^{2}-7x-6+x^{2}
Subtract 24 from 18 to get -6.
x=3x^{2}-7x-6
Combine 2x^{2} and x^{2} to get 3x^{2}.
x-3x^{2}=-7x-6
Subtract 3x^{2} from both sides.
x-3x^{2}+7x=-6
Add 7x to both sides.
8x-3x^{2}=-6
Combine x and 7x to get 8x.
8x-3x^{2}+6=0
Add 6 to both sides.
-3x^{2}+8x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\times 6}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\times 6}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64+72}}{2\left(-3\right)}
Multiply 12 times 6.
x=\frac{-8±\sqrt{136}}{2\left(-3\right)}
Add 64 to 72.
x=\frac{-8±2\sqrt{34}}{2\left(-3\right)}
Take the square root of 136.
x=\frac{-8±2\sqrt{34}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{34}-8}{-6}
Now solve the equation x=\frac{-8±2\sqrt{34}}{-6} when ± is plus. Add -8 to 2\sqrt{34}.
x=\frac{4-\sqrt{34}}{3}
Divide -8+2\sqrt{34} by -6.
x=\frac{-2\sqrt{34}-8}{-6}
Now solve the equation x=\frac{-8±2\sqrt{34}}{-6} when ± is minus. Subtract 2\sqrt{34} from -8.
x=\frac{\sqrt{34}+4}{3}
Divide -8-2\sqrt{34} by -6.
x=\frac{4-\sqrt{34}}{3} x=\frac{\sqrt{34}+4}{3}
The equation is now solved.
x=2\left(x^{2}-6x+9\right)-\left(3-x\right)\left(x+8\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x=2x^{2}-12x+18-\left(3-x\right)\left(x+8\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
x=2x^{2}-12x+18-\left(-5x+24-x^{2}\right)
Use the distributive property to multiply 3-x by x+8 and combine like terms.
x=2x^{2}-12x+18+5x-24+x^{2}
To find the opposite of -5x+24-x^{2}, find the opposite of each term.
x=2x^{2}-7x+18-24+x^{2}
Combine -12x and 5x to get -7x.
x=2x^{2}-7x-6+x^{2}
Subtract 24 from 18 to get -6.
x=3x^{2}-7x-6
Combine 2x^{2} and x^{2} to get 3x^{2}.
x-3x^{2}=-7x-6
Subtract 3x^{2} from both sides.
x-3x^{2}+7x=-6
Add 7x to both sides.
8x-3x^{2}=-6
Combine x and 7x to get 8x.
-3x^{2}+8x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+8x}{-3}=-\frac{6}{-3}
Divide both sides by -3.
x^{2}+\frac{8}{-3}x=-\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{8}{3}x=-\frac{6}{-3}
Divide 8 by -3.
x^{2}-\frac{8}{3}x=2
Divide -6 by -3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=2+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=2+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{34}{9}
Add 2 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{34}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{34}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{34}}{3} x-\frac{4}{3}=-\frac{\sqrt{34}}{3}
Simplify.
x=\frac{\sqrt{34}+4}{3} x=\frac{4-\sqrt{34}}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}