Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{3x}{2k}\text{, }&k\neq 0\\h\in \mathrm{C}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{3x}{2h}\text{, }&h\neq 0\\k\in \mathrm{C}\text{, }&x=0\text{ and }h=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{3x}{2k}\text{, }&k\neq 0\\h\in \mathrm{R}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{3x}{2h}\text{, }&h\neq 0\\k\in \mathrm{R}\text{, }&x=0\text{ and }h=0\end{matrix}\right.
Graph
Share
Copied to clipboard
-\frac{1}{2}x+kh=x
Swap sides so that all variable terms are on the left hand side.
kh=x+\frac{1}{2}x
Add \frac{1}{2}x to both sides.
kh=\frac{3}{2}x
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
kh=\frac{3x}{2}
The equation is in standard form.
\frac{kh}{k}=\frac{3x}{2k}
Divide both sides by k.
h=\frac{3x}{2k}
Dividing by k undoes the multiplication by k.
-\frac{1}{2}x+kh=x
Swap sides so that all variable terms are on the left hand side.
kh=x+\frac{1}{2}x
Add \frac{1}{2}x to both sides.
kh=\frac{3}{2}x
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
hk=\frac{3x}{2}
The equation is in standard form.
\frac{hk}{h}=\frac{3x}{2h}
Divide both sides by h.
k=\frac{3x}{2h}
Dividing by h undoes the multiplication by h.
-\frac{1}{2}x+kh=x
Swap sides so that all variable terms are on the left hand side.
kh=x+\frac{1}{2}x
Add \frac{1}{2}x to both sides.
kh=\frac{3}{2}x
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
kh=\frac{3x}{2}
The equation is in standard form.
\frac{kh}{k}=\frac{3x}{2k}
Divide both sides by k.
h=\frac{3x}{2k}
Dividing by k undoes the multiplication by k.
-\frac{1}{2}x+kh=x
Swap sides so that all variable terms are on the left hand side.
kh=x+\frac{1}{2}x
Add \frac{1}{2}x to both sides.
kh=\frac{3}{2}x
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
hk=\frac{3x}{2}
The equation is in standard form.
\frac{hk}{h}=\frac{3x}{2h}
Divide both sides by h.
k=\frac{3x}{2h}
Dividing by h undoes the multiplication by h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}