Solve for x (complex solution)
x=\frac{-\sqrt{47}i-17}{2}\approx -8.5-3.4278273i
x=\frac{-17+\sqrt{47}i}{2}\approx -8.5+3.4278273i
Graph
Share
Copied to clipboard
x=x^{2}+18x+81+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+9\right)^{2}.
x=x^{2}+18x+84
Add 81 and 3 to get 84.
x-x^{2}=18x+84
Subtract x^{2} from both sides.
x-x^{2}-18x=84
Subtract 18x from both sides.
-17x-x^{2}=84
Combine x and -18x to get -17x.
-17x-x^{2}-84=0
Subtract 84 from both sides.
-x^{2}-17x-84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-1\right)\left(-84\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -17 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-1\right)\left(-84\right)}}{2\left(-1\right)}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289+4\left(-84\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-17\right)±\sqrt{289-336}}{2\left(-1\right)}
Multiply 4 times -84.
x=\frac{-\left(-17\right)±\sqrt{-47}}{2\left(-1\right)}
Add 289 to -336.
x=\frac{-\left(-17\right)±\sqrt{47}i}{2\left(-1\right)}
Take the square root of -47.
x=\frac{17±\sqrt{47}i}{2\left(-1\right)}
The opposite of -17 is 17.
x=\frac{17±\sqrt{47}i}{-2}
Multiply 2 times -1.
x=\frac{17+\sqrt{47}i}{-2}
Now solve the equation x=\frac{17±\sqrt{47}i}{-2} when ± is plus. Add 17 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-17}{2}
Divide 17+i\sqrt{47} by -2.
x=\frac{-\sqrt{47}i+17}{-2}
Now solve the equation x=\frac{17±\sqrt{47}i}{-2} when ± is minus. Subtract i\sqrt{47} from 17.
x=\frac{-17+\sqrt{47}i}{2}
Divide 17-i\sqrt{47} by -2.
x=\frac{-\sqrt{47}i-17}{2} x=\frac{-17+\sqrt{47}i}{2}
The equation is now solved.
x=x^{2}+18x+81+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+9\right)^{2}.
x=x^{2}+18x+84
Add 81 and 3 to get 84.
x-x^{2}=18x+84
Subtract x^{2} from both sides.
x-x^{2}-18x=84
Subtract 18x from both sides.
-17x-x^{2}=84
Combine x and -18x to get -17x.
-x^{2}-17x=84
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-17x}{-1}=\frac{84}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{17}{-1}\right)x=\frac{84}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+17x=\frac{84}{-1}
Divide -17 by -1.
x^{2}+17x=-84
Divide 84 by -1.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=-84+\left(\frac{17}{2}\right)^{2}
Divide 17, the coefficient of the x term, by 2 to get \frac{17}{2}. Then add the square of \frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+17x+\frac{289}{4}=-84+\frac{289}{4}
Square \frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+17x+\frac{289}{4}=-\frac{47}{4}
Add -84 to \frac{289}{4}.
\left(x+\frac{17}{2}\right)^{2}=-\frac{47}{4}
Factor x^{2}+17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Take the square root of both sides of the equation.
x+\frac{17}{2}=\frac{\sqrt{47}i}{2} x+\frac{17}{2}=-\frac{\sqrt{47}i}{2}
Simplify.
x=\frac{-17+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i-17}{2}
Subtract \frac{17}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}