Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=x^{2}+6x+9+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x=x^{2}+6x+13
Add 9 and 4 to get 13.
x-x^{2}=6x+13
Subtract x^{2} from both sides.
x-x^{2}-6x=13
Subtract 6x from both sides.
-5x-x^{2}=13
Combine x and -6x to get -5x.
-5x-x^{2}-13=0
Subtract 13 from both sides.
-x^{2}-5x-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\left(-13\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25-52}}{2\left(-1\right)}
Multiply 4 times -13.
x=\frac{-\left(-5\right)±\sqrt{-27}}{2\left(-1\right)}
Add 25 to -52.
x=\frac{-\left(-5\right)±3\sqrt{3}i}{2\left(-1\right)}
Take the square root of -27.
x=\frac{5±3\sqrt{3}i}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±3\sqrt{3}i}{-2}
Multiply 2 times -1.
x=\frac{5+3\sqrt{3}i}{-2}
Now solve the equation x=\frac{5±3\sqrt{3}i}{-2} when ± is plus. Add 5 to 3i\sqrt{3}.
x=\frac{-3\sqrt{3}i-5}{2}
Divide 5+3i\sqrt{3} by -2.
x=\frac{-3\sqrt{3}i+5}{-2}
Now solve the equation x=\frac{5±3\sqrt{3}i}{-2} when ± is minus. Subtract 3i\sqrt{3} from 5.
x=\frac{-5+3\sqrt{3}i}{2}
Divide 5-3i\sqrt{3} by -2.
x=\frac{-3\sqrt{3}i-5}{2} x=\frac{-5+3\sqrt{3}i}{2}
The equation is now solved.
x=x^{2}+6x+9+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x=x^{2}+6x+13
Add 9 and 4 to get 13.
x-x^{2}=6x+13
Subtract x^{2} from both sides.
x-x^{2}-6x=13
Subtract 6x from both sides.
-5x-x^{2}=13
Combine x and -6x to get -5x.
-x^{2}-5x=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-5x}{-1}=\frac{13}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{5}{-1}\right)x=\frac{13}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+5x=\frac{13}{-1}
Divide -5 by -1.
x^{2}+5x=-13
Divide 13 by -1.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-13+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-13+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{27}{4}
Add -13 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{27}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{3\sqrt{3}i}{2} x+\frac{5}{2}=-\frac{3\sqrt{3}i}{2}
Simplify.
x=\frac{-5+3\sqrt{3}i}{2} x=\frac{-3\sqrt{3}i-5}{2}
Subtract \frac{5}{2} from both sides of the equation.