Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-\frac{x+2}{x-1}=0
Subtract \frac{x+2}{x-1} from both sides.
\frac{x\left(x-1\right)}{x-1}-\frac{x+2}{x-1}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x+2\right)}{x-1}=0
Since \frac{x\left(x-1\right)}{x-1} and \frac{x+2}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-x-2}{x-1}=0
Do the multiplications in x\left(x-1\right)-\left(x+2\right).
\frac{x^{2}-2x-2}{x-1}=0
Combine like terms in x^{2}-x-x-2.
x^{2}-2x-2=0
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
x-\frac{x+2}{x-1}=0
Subtract \frac{x+2}{x-1} from both sides.
\frac{x\left(x-1\right)}{x-1}-\frac{x+2}{x-1}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x+2\right)}{x-1}=0
Since \frac{x\left(x-1\right)}{x-1} and \frac{x+2}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-x-2}{x-1}=0
Do the multiplications in x\left(x-1\right)-\left(x+2\right).
\frac{x^{2}-2x-2}{x-1}=0
Combine like terms in x^{2}-x-x-2.
x^{2}-2x-2=0
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x^{2}-2x=2
Add 2 to both sides. Anything plus zero gives itself.
x^{2}-2x+1=2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=3
Add 2 to 1.
\left(x-1\right)^{2}=3
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-1=\sqrt{3} x-1=-\sqrt{3}
Simplify.
x=\sqrt{3}+1 x=1-\sqrt{3}
Add 1 to both sides of the equation.