Skip to main content
Solve for k
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=kx^{3}-2x^{3}-\left(k-1\right)x^{2}+kx-6
Use the distributive property to multiply k-2 by x^{3}.
x=kx^{3}-2x^{3}-\left(kx^{2}-x^{2}\right)+kx-6
Use the distributive property to multiply k-1 by x^{2}.
x=kx^{3}-2x^{3}-kx^{2}+x^{2}+kx-6
To find the opposite of kx^{2}-x^{2}, find the opposite of each term.
kx^{3}-2x^{3}-kx^{2}+x^{2}+kx-6=x
Swap sides so that all variable terms are on the left hand side.
kx^{3}-kx^{2}+x^{2}+kx-6=x+2x^{3}
Add 2x^{3} to both sides.
kx^{3}-kx^{2}+kx-6=x+2x^{3}-x^{2}
Subtract x^{2} from both sides.
kx^{3}-kx^{2}+kx=x+2x^{3}-x^{2}+6
Add 6 to both sides.
\left(x^{3}-x^{2}+x\right)k=x+2x^{3}-x^{2}+6
Combine all terms containing k.
\left(x^{3}-x^{2}+x\right)k=2x^{3}-x^{2}+x+6
The equation is in standard form.
\frac{\left(x^{3}-x^{2}+x\right)k}{x^{3}-x^{2}+x}=\frac{2x^{3}-x^{2}+x+6}{x^{3}-x^{2}+x}
Divide both sides by x^{3}-x^{2}+x.
k=\frac{2x^{3}-x^{2}+x+6}{x^{3}-x^{2}+x}
Dividing by x^{3}-x^{2}+x undoes the multiplication by x^{3}-x^{2}+x.
k=\frac{2x^{3}-x^{2}+x+6}{x\left(x^{2}-x+1\right)}
Divide x+2x^{3}-x^{2}+6 by x^{3}-x^{2}+x.