Solve for k
k=-\frac{-2x^{3}+x^{2}-x-6}{x\left(x^{2}-x+1\right)}
x\neq 0
Graph
Share
Copied to clipboard
x=kx^{3}-2x^{3}-\left(k-1\right)x^{2}+kx-6
Use the distributive property to multiply k-2 by x^{3}.
x=kx^{3}-2x^{3}-\left(kx^{2}-x^{2}\right)+kx-6
Use the distributive property to multiply k-1 by x^{2}.
x=kx^{3}-2x^{3}-kx^{2}+x^{2}+kx-6
To find the opposite of kx^{2}-x^{2}, find the opposite of each term.
kx^{3}-2x^{3}-kx^{2}+x^{2}+kx-6=x
Swap sides so that all variable terms are on the left hand side.
kx^{3}-kx^{2}+x^{2}+kx-6=x+2x^{3}
Add 2x^{3} to both sides.
kx^{3}-kx^{2}+kx-6=x+2x^{3}-x^{2}
Subtract x^{2} from both sides.
kx^{3}-kx^{2}+kx=x+2x^{3}-x^{2}+6
Add 6 to both sides.
\left(x^{3}-x^{2}+x\right)k=x+2x^{3}-x^{2}+6
Combine all terms containing k.
\left(x^{3}-x^{2}+x\right)k=2x^{3}-x^{2}+x+6
The equation is in standard form.
\frac{\left(x^{3}-x^{2}+x\right)k}{x^{3}-x^{2}+x}=\frac{2x^{3}-x^{2}+x+6}{x^{3}-x^{2}+x}
Divide both sides by x^{3}-x^{2}+x.
k=\frac{2x^{3}-x^{2}+x+6}{x^{3}-x^{2}+x}
Dividing by x^{3}-x^{2}+x undoes the multiplication by x^{3}-x^{2}+x.
k=\frac{2x^{3}-x^{2}+x+6}{x\left(x^{2}-x+1\right)}
Divide x+2x^{3}-x^{2}+6 by x^{3}-x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}