Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{x-5}\right)^{2}
Square both sides of the equation.
x^{2}=x-5
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x^{2}-x=-5
Subtract x from both sides.
x^{2}-x+5=0
Add 5 to both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-20}}{2}
Multiply -4 times 5.
x=\frac{-\left(-1\right)±\sqrt{-19}}{2}
Add 1 to -20.
x=\frac{-\left(-1\right)±\sqrt{19}i}{2}
Take the square root of -19.
x=\frac{1±\sqrt{19}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{19}i}{2}
Now solve the equation x=\frac{1±\sqrt{19}i}{2} when ± is plus. Add 1 to i\sqrt{19}.
x=\frac{-\sqrt{19}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{19}i}{2} when ± is minus. Subtract i\sqrt{19} from 1.
x=\frac{1+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+1}{2}
The equation is now solved.
\frac{1+\sqrt{19}i}{2}=\sqrt{\frac{1+\sqrt{19}i}{2}-5}
Substitute \frac{1+\sqrt{19}i}{2} for x in the equation x=\sqrt{x-5}.
\frac{1}{2}+\frac{1}{2}i\times 19^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 19^{\frac{1}{2}}
Simplify. The value x=\frac{1+\sqrt{19}i}{2} satisfies the equation.
\frac{-\sqrt{19}i+1}{2}=\sqrt{\frac{-\sqrt{19}i+1}{2}-5}
Substitute \frac{-\sqrt{19}i+1}{2} for x in the equation x=\sqrt{x-5}.
-\frac{1}{2}i\times 19^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 19^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{19}i+1}{2} does not satisfy the equation.
x=\frac{1+\sqrt{19}i}{2}
Equation x=\sqrt{x-5} has a unique solution.