Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x^{2}=x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x^{2}-x=-4
Subtract x from both sides.
x^{2}-x+4=0
Add 4 to both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-16}}{2}
Multiply -4 times 4.
x=\frac{-\left(-1\right)±\sqrt{-15}}{2}
Add 1 to -16.
x=\frac{-\left(-1\right)±\sqrt{15}i}{2}
Take the square root of -15.
x=\frac{1±\sqrt{15}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{15}i}{2}
Now solve the equation x=\frac{1±\sqrt{15}i}{2} when ± is plus. Add 1 to i\sqrt{15}.
x=\frac{-\sqrt{15}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{15}i}{2} when ± is minus. Subtract i\sqrt{15} from 1.
x=\frac{1+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i+1}{2}
The equation is now solved.
\frac{1+\sqrt{15}i}{2}=\sqrt{\frac{1+\sqrt{15}i}{2}-4}
Substitute \frac{1+\sqrt{15}i}{2} for x in the equation x=\sqrt{x-4}.
\frac{1}{2}+\frac{1}{2}i\times 15^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 15^{\frac{1}{2}}
Simplify. The value x=\frac{1+\sqrt{15}i}{2} satisfies the equation.
\frac{-\sqrt{15}i+1}{2}=\sqrt{\frac{-\sqrt{15}i+1}{2}-4}
Substitute \frac{-\sqrt{15}i+1}{2} for x in the equation x=\sqrt{x-4}.
-\frac{1}{2}i\times 15^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 15^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{15}i+1}{2} does not satisfy the equation.
x=\frac{1+\sqrt{15}i}{2}
Equation x=\sqrt{x-4} has a unique solution.