Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{9x^{2}-28x+3}\right)^{2}
Square both sides of the equation.
x^{2}=9x^{2}-28x+3
Calculate \sqrt{9x^{2}-28x+3} to the power of 2 and get 9x^{2}-28x+3.
x^{2}-9x^{2}=-28x+3
Subtract 9x^{2} from both sides.
-8x^{2}=-28x+3
Combine x^{2} and -9x^{2} to get -8x^{2}.
-8x^{2}+28x=3
Add 28x to both sides.
-8x^{2}+28x-3=0
Subtract 3 from both sides.
x=\frac{-28±\sqrt{28^{2}-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 28 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
Square 28.
x=\frac{-28±\sqrt{784+32\left(-3\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-28±\sqrt{784-96}}{2\left(-8\right)}
Multiply 32 times -3.
x=\frac{-28±\sqrt{688}}{2\left(-8\right)}
Add 784 to -96.
x=\frac{-28±4\sqrt{43}}{2\left(-8\right)}
Take the square root of 688.
x=\frac{-28±4\sqrt{43}}{-16}
Multiply 2 times -8.
x=\frac{4\sqrt{43}-28}{-16}
Now solve the equation x=\frac{-28±4\sqrt{43}}{-16} when ± is plus. Add -28 to 4\sqrt{43}.
x=\frac{7-\sqrt{43}}{4}
Divide -28+4\sqrt{43} by -16.
x=\frac{-4\sqrt{43}-28}{-16}
Now solve the equation x=\frac{-28±4\sqrt{43}}{-16} when ± is minus. Subtract 4\sqrt{43} from -28.
x=\frac{\sqrt{43}+7}{4}
Divide -28-4\sqrt{43} by -16.
x=\frac{7-\sqrt{43}}{4} x=\frac{\sqrt{43}+7}{4}
The equation is now solved.
\frac{7-\sqrt{43}}{4}=\sqrt{9\times \left(\frac{7-\sqrt{43}}{4}\right)^{2}-28\times \frac{7-\sqrt{43}}{4}+3}
Substitute \frac{7-\sqrt{43}}{4} for x in the equation x=\sqrt{9x^{2}-28x+3}.
\frac{7}{4}-\frac{1}{4}\times 43^{\frac{1}{2}}=\frac{7}{4}-\frac{1}{4}\times 43^{\frac{1}{2}}
Simplify. The value x=\frac{7-\sqrt{43}}{4} satisfies the equation.
\frac{\sqrt{43}+7}{4}=\sqrt{9\times \left(\frac{\sqrt{43}+7}{4}\right)^{2}-28\times \frac{\sqrt{43}+7}{4}+3}
Substitute \frac{\sqrt{43}+7}{4} for x in the equation x=\sqrt{9x^{2}-28x+3}.
\frac{1}{4}\times 43^{\frac{1}{2}}+\frac{7}{4}=\frac{7}{4}+\frac{1}{4}\times 43^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{43}+7}{4} satisfies the equation.
x=\frac{7-\sqrt{43}}{4} x=\frac{\sqrt{43}+7}{4}
List all solutions of x=\sqrt{9x^{2}-28x+3}.