Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{4x-20}\right)^{2}
Square both sides of the equation.
x^{2}=4x-20
Calculate \sqrt{4x-20} to the power of 2 and get 4x-20.
x^{2}-4x=-20
Subtract 4x from both sides.
x^{2}-4x+20=0
Add 20 to both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 20}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-80}}{2}
Multiply -4 times 20.
x=\frac{-\left(-4\right)±\sqrt{-64}}{2}
Add 16 to -80.
x=\frac{-\left(-4\right)±8i}{2}
Take the square root of -64.
x=\frac{4±8i}{2}
The opposite of -4 is 4.
x=\frac{4+8i}{2}
Now solve the equation x=\frac{4±8i}{2} when ± is plus. Add 4 to 8i.
x=2+4i
Divide 4+8i by 2.
x=\frac{4-8i}{2}
Now solve the equation x=\frac{4±8i}{2} when ± is minus. Subtract 8i from 4.
x=2-4i
Divide 4-8i by 2.
x=2+4i x=2-4i
The equation is now solved.
2+4i=\sqrt{4\left(2+4i\right)-20}
Substitute 2+4i for x in the equation x=\sqrt{4x-20}.
2+4i=2+4i
Simplify. The value x=2+4i satisfies the equation.
2-4i=\sqrt{4\left(2-4i\right)-20}
Substitute 2-4i for x in the equation x=\sqrt{4x-20}.
2-4i=2-4i
Simplify. The value x=2-4i satisfies the equation.
x=2+4i x=2-4i
List all solutions of x=\sqrt{4x-20}.