Solve for x
x = \frac{\sqrt{17} + 1}{4} \approx 1.280776406
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{2+x-x^{2}}\right)^{2}
Square both sides of the equation.
x^{2}=2+x-x^{2}
Calculate \sqrt{2+x-x^{2}} to the power of 2 and get 2+x-x^{2}.
x^{2}-2=x-x^{2}
Subtract 2 from both sides.
x^{2}-2-x=-x^{2}
Subtract x from both sides.
x^{2}-2-x+x^{2}=0
Add x^{2} to both sides.
2x^{2}-2-x=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-1\right)±\sqrt{17}}{2\times 2}
Add 1 to 16.
x=\frac{1±\sqrt{17}}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±\sqrt{17}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{17}+1}{4}
Now solve the equation x=\frac{1±\sqrt{17}}{4} when ± is plus. Add 1 to \sqrt{17}.
x=\frac{1-\sqrt{17}}{4}
Now solve the equation x=\frac{1±\sqrt{17}}{4} when ± is minus. Subtract \sqrt{17} from 1.
x=\frac{\sqrt{17}+1}{4} x=\frac{1-\sqrt{17}}{4}
The equation is now solved.
\frac{\sqrt{17}+1}{4}=\sqrt{2+\frac{\sqrt{17}+1}{4}-\left(\frac{\sqrt{17}+1}{4}\right)^{2}}
Substitute \frac{\sqrt{17}+1}{4} for x in the equation x=\sqrt{2+x-x^{2}}.
\frac{1}{4}\times 17^{\frac{1}{2}}+\frac{1}{4}=\frac{1}{4}\times 17^{\frac{1}{2}}+\frac{1}{4}
Simplify. The value x=\frac{\sqrt{17}+1}{4} satisfies the equation.
\frac{1-\sqrt{17}}{4}=\sqrt{2+\frac{1-\sqrt{17}}{4}-\left(\frac{1-\sqrt{17}}{4}\right)^{2}}
Substitute \frac{1-\sqrt{17}}{4} for x in the equation x=\sqrt{2+x-x^{2}}.
\frac{1}{4}-\frac{1}{4}\times 17^{\frac{1}{2}}=\frac{1}{4}\times 17^{\frac{1}{2}}-\frac{1}{4}
Simplify. The value x=\frac{1-\sqrt{17}}{4} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{17}+1}{4}
Equation x=\sqrt{2+x-x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}