Solve for x
x=1
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{\frac{2x+3}{2x+3}}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{1}\right)^{2}
Cancel out 2x+3 in both numerator and denominator.
x^{2}=1
The square of \sqrt{1} is 1.
x^{2}-1=0
Subtract 1 from both sides.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
1=\sqrt{\frac{2\times 1+3}{2\times 1+3}}
Substitute 1 for x in the equation x=\sqrt{\frac{2x+3}{2x+3}}.
1=1
Simplify. The value x=1 satisfies the equation.
-1=\sqrt{\frac{2\left(-1\right)+3}{2\left(-1\right)+3}}
Substitute -1 for x in the equation x=\sqrt{\frac{2x+3}{2x+3}}.
-1=1
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=1
Equation x=\sqrt{\frac{2x+3}{2x+3}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}