Solve for x
x = \frac{\sqrt{349} + 23}{6} \approx 6.946923615
x=\frac{23-\sqrt{349}}{6}\approx 0.719743051
Graph
Share
Copied to clipboard
x=\frac{3}{5}x^{2}-\frac{18}{5}x+3
Divide each term of 3x^{2}-18x+15 by 5 to get \frac{3}{5}x^{2}-\frac{18}{5}x+3.
x-\frac{3}{5}x^{2}=-\frac{18}{5}x+3
Subtract \frac{3}{5}x^{2} from both sides.
x-\frac{3}{5}x^{2}+\frac{18}{5}x=3
Add \frac{18}{5}x to both sides.
\frac{23}{5}x-\frac{3}{5}x^{2}=3
Combine x and \frac{18}{5}x to get \frac{23}{5}x.
\frac{23}{5}x-\frac{3}{5}x^{2}-3=0
Subtract 3 from both sides.
-\frac{3}{5}x^{2}+\frac{23}{5}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{23}{5}±\sqrt{\left(\frac{23}{5}\right)^{2}-4\left(-\frac{3}{5}\right)\left(-3\right)}}{2\left(-\frac{3}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{5} for a, \frac{23}{5} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{23}{5}±\sqrt{\frac{529}{25}-4\left(-\frac{3}{5}\right)\left(-3\right)}}{2\left(-\frac{3}{5}\right)}
Square \frac{23}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{23}{5}±\sqrt{\frac{529}{25}+\frac{12}{5}\left(-3\right)}}{2\left(-\frac{3}{5}\right)}
Multiply -4 times -\frac{3}{5}.
x=\frac{-\frac{23}{5}±\sqrt{\frac{529}{25}-\frac{36}{5}}}{2\left(-\frac{3}{5}\right)}
Multiply \frac{12}{5} times -3.
x=\frac{-\frac{23}{5}±\sqrt{\frac{349}{25}}}{2\left(-\frac{3}{5}\right)}
Add \frac{529}{25} to -\frac{36}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{23}{5}±\frac{\sqrt{349}}{5}}{2\left(-\frac{3}{5}\right)}
Take the square root of \frac{349}{25}.
x=\frac{-\frac{23}{5}±\frac{\sqrt{349}}{5}}{-\frac{6}{5}}
Multiply 2 times -\frac{3}{5}.
x=\frac{\sqrt{349}-23}{-\frac{6}{5}\times 5}
Now solve the equation x=\frac{-\frac{23}{5}±\frac{\sqrt{349}}{5}}{-\frac{6}{5}} when ± is plus. Add -\frac{23}{5} to \frac{\sqrt{349}}{5}.
x=\frac{23-\sqrt{349}}{6}
Divide \frac{-23+\sqrt{349}}{5} by -\frac{6}{5} by multiplying \frac{-23+\sqrt{349}}{5} by the reciprocal of -\frac{6}{5}.
x=\frac{-\sqrt{349}-23}{-\frac{6}{5}\times 5}
Now solve the equation x=\frac{-\frac{23}{5}±\frac{\sqrt{349}}{5}}{-\frac{6}{5}} when ± is minus. Subtract \frac{\sqrt{349}}{5} from -\frac{23}{5}.
x=\frac{\sqrt{349}+23}{6}
Divide \frac{-23-\sqrt{349}}{5} by -\frac{6}{5} by multiplying \frac{-23-\sqrt{349}}{5} by the reciprocal of -\frac{6}{5}.
x=\frac{23-\sqrt{349}}{6} x=\frac{\sqrt{349}+23}{6}
The equation is now solved.
x=\frac{3}{5}x^{2}-\frac{18}{5}x+3
Divide each term of 3x^{2}-18x+15 by 5 to get \frac{3}{5}x^{2}-\frac{18}{5}x+3.
x-\frac{3}{5}x^{2}=-\frac{18}{5}x+3
Subtract \frac{3}{5}x^{2} from both sides.
x-\frac{3}{5}x^{2}+\frac{18}{5}x=3
Add \frac{18}{5}x to both sides.
\frac{23}{5}x-\frac{3}{5}x^{2}=3
Combine x and \frac{18}{5}x to get \frac{23}{5}x.
-\frac{3}{5}x^{2}+\frac{23}{5}x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{3}{5}x^{2}+\frac{23}{5}x}{-\frac{3}{5}}=\frac{3}{-\frac{3}{5}}
Divide both sides of the equation by -\frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{23}{5}}{-\frac{3}{5}}x=\frac{3}{-\frac{3}{5}}
Dividing by -\frac{3}{5} undoes the multiplication by -\frac{3}{5}.
x^{2}-\frac{23}{3}x=\frac{3}{-\frac{3}{5}}
Divide \frac{23}{5} by -\frac{3}{5} by multiplying \frac{23}{5} by the reciprocal of -\frac{3}{5}.
x^{2}-\frac{23}{3}x=-5
Divide 3 by -\frac{3}{5} by multiplying 3 by the reciprocal of -\frac{3}{5}.
x^{2}-\frac{23}{3}x+\left(-\frac{23}{6}\right)^{2}=-5+\left(-\frac{23}{6}\right)^{2}
Divide -\frac{23}{3}, the coefficient of the x term, by 2 to get -\frac{23}{6}. Then add the square of -\frac{23}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{3}x+\frac{529}{36}=-5+\frac{529}{36}
Square -\frac{23}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{3}x+\frac{529}{36}=\frac{349}{36}
Add -5 to \frac{529}{36}.
\left(x-\frac{23}{6}\right)^{2}=\frac{349}{36}
Factor x^{2}-\frac{23}{3}x+\frac{529}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{6}\right)^{2}}=\sqrt{\frac{349}{36}}
Take the square root of both sides of the equation.
x-\frac{23}{6}=\frac{\sqrt{349}}{6} x-\frac{23}{6}=-\frac{\sqrt{349}}{6}
Simplify.
x=\frac{\sqrt{349}+23}{6} x=\frac{23-\sqrt{349}}{6}
Add \frac{23}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}