Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
Use the distributive property to multiply \frac{2}{3}x by 2x+9.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
Multiply x and x to get x^{2}.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Express \frac{2}{3}\times 2 as a single fraction.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Multiply 2 and 2 to get 4.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
Express \frac{2}{3}\times 9 as a single fraction.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
Multiply 2 and 9 to get 18.
x=\frac{4}{3}x^{2}+6x-5x+1
Divide 18 by 3 to get 6.
x=\frac{4}{3}x^{2}+x+1
Combine 6x and -5x to get x.
x-\frac{4}{3}x^{2}=x+1
Subtract \frac{4}{3}x^{2} from both sides.
x-\frac{4}{3}x^{2}-x=1
Subtract x from both sides.
-\frac{4}{3}x^{2}=1
Combine x and -x to get 0.
x^{2}=1\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
x^{2}=-\frac{3}{4}
Multiply 1 and -\frac{3}{4} to get -\frac{3}{4}.
x=\frac{\sqrt{3}i}{2} x=-\frac{\sqrt{3}i}{2}
The equation is now solved.
x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
Use the distributive property to multiply \frac{2}{3}x by 2x+9.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
Multiply x and x to get x^{2}.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Express \frac{2}{3}\times 2 as a single fraction.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Multiply 2 and 2 to get 4.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
Express \frac{2}{3}\times 9 as a single fraction.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
Multiply 2 and 9 to get 18.
x=\frac{4}{3}x^{2}+6x-5x+1
Divide 18 by 3 to get 6.
x=\frac{4}{3}x^{2}+x+1
Combine 6x and -5x to get x.
x-\frac{4}{3}x^{2}=x+1
Subtract \frac{4}{3}x^{2} from both sides.
x-\frac{4}{3}x^{2}-x=1
Subtract x from both sides.
-\frac{4}{3}x^{2}=1
Combine x and -x to get 0.
-\frac{4}{3}x^{2}-1=0
Subtract 1 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4}{3} for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{16}{3}\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Multiply -4 times -\frac{4}{3}.
x=\frac{0±\sqrt{-\frac{16}{3}}}{2\left(-\frac{4}{3}\right)}
Multiply \frac{16}{3} times -1.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{2\left(-\frac{4}{3}\right)}
Take the square root of -\frac{16}{3}.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}}
Multiply 2 times -\frac{4}{3}.
x=-\frac{\sqrt{3}i}{2}
Now solve the equation x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} when ± is plus.
x=\frac{\sqrt{3}i}{2}
Now solve the equation x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} when ± is minus.
x=-\frac{\sqrt{3}i}{2} x=\frac{\sqrt{3}i}{2}
The equation is now solved.