Solve for x (complex solution)
x=\frac{-\sqrt{39}i-1}{4}\approx -0.25-1.5612495i
x=-1
x=\frac{-1+\sqrt{39}i}{4}\approx -0.25+1.5612495i
Solve for x
x=-1
Graph
Quiz
Polynomial
5 problems similar to:
( x ) = \frac { ( 2 x + 1 ) ( x - 5 ) } { ( 2 x - 1 ) ( x + 3 ) } ?
Share
Copied to clipboard
x=\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}
Use the distributive property to multiply 2x+1 by x-5 and combine like terms.
x=\frac{2x^{2}-9x-5}{2x^{2}+5x-3}
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
x-\frac{2x^{2}-9x-5}{2x^{2}+5x-3}=0
Subtract \frac{2x^{2}-9x-5}{2x^{2}+5x-3} from both sides.
x-\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}=0
Factor 2x^{2}+5x-3.
\frac{x\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)}-\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)}.
\frac{x\left(2x-1\right)\left(x+3\right)-\left(2x^{2}-9x-5\right)}{\left(2x-1\right)\left(x+3\right)}=0
Since \frac{x\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)} and \frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+6x^{2}-x^{2}-3x-2x^{2}+9x+5}{\left(2x-1\right)\left(x+3\right)}=0
Do the multiplications in x\left(2x-1\right)\left(x+3\right)-\left(2x^{2}-9x-5\right).
\frac{2x^{3}+3x^{2}+6x+5}{\left(2x-1\right)\left(x+3\right)}=0
Combine like terms in 2x^{3}+6x^{2}-x^{2}-3x-2x^{2}+9x+5.
2x^{3}+3x^{2}+6x+5=0
Variable x cannot be equal to any of the values -3,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(x+3\right).
±\frac{5}{2},±5,±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 5 and q divides the leading coefficient 2. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}+x+5=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 2x^{3}+3x^{2}+6x+5 by x+1 to get 2x^{2}+x+5. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\times 5}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 1 for b, and 5 for c in the quadratic formula.
x=\frac{-1±\sqrt{-39}}{4}
Do the calculations.
x=\frac{-\sqrt{39}i-1}{4} x=\frac{-1+\sqrt{39}i}{4}
Solve the equation 2x^{2}+x+5=0 when ± is plus and when ± is minus.
x=-1 x=\frac{-\sqrt{39}i-1}{4} x=\frac{-1+\sqrt{39}i}{4}
List all found solutions.
x=\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}
Use the distributive property to multiply 2x+1 by x-5 and combine like terms.
x=\frac{2x^{2}-9x-5}{2x^{2}+5x-3}
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
x-\frac{2x^{2}-9x-5}{2x^{2}+5x-3}=0
Subtract \frac{2x^{2}-9x-5}{2x^{2}+5x-3} from both sides.
x-\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}=0
Factor 2x^{2}+5x-3.
\frac{x\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)}-\frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)}.
\frac{x\left(2x-1\right)\left(x+3\right)-\left(2x^{2}-9x-5\right)}{\left(2x-1\right)\left(x+3\right)}=0
Since \frac{x\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)} and \frac{2x^{2}-9x-5}{\left(2x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+6x^{2}-x^{2}-3x-2x^{2}+9x+5}{\left(2x-1\right)\left(x+3\right)}=0
Do the multiplications in x\left(2x-1\right)\left(x+3\right)-\left(2x^{2}-9x-5\right).
\frac{2x^{3}+3x^{2}+6x+5}{\left(2x-1\right)\left(x+3\right)}=0
Combine like terms in 2x^{3}+6x^{2}-x^{2}-3x-2x^{2}+9x+5.
2x^{3}+3x^{2}+6x+5=0
Variable x cannot be equal to any of the values -3,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(x+3\right).
±\frac{5}{2},±5,±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 5 and q divides the leading coefficient 2. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}+x+5=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 2x^{3}+3x^{2}+6x+5 by x+1 to get 2x^{2}+x+5. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\times 5}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 1 for b, and 5 for c in the quadratic formula.
x=\frac{-1±\sqrt{-39}}{4}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=-1
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}