Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\left(\sqrt{2}\right)^{2}-5x\left(x-4\right)=\left(2\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Expand \left(x\sqrt{2}\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=\left(2\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
The square of \sqrt{2} is 2.
x^{2}\times 2-5x\left(x-4\right)=2^{2}\left(\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Expand \left(2\sqrt{6}\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=4\left(\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}\times 2-5x\left(x-4\right)=4\times 6-\left(x-4\right)^{2}
The square of \sqrt{6} is 6.
x^{2}\times 2-5x\left(x-4\right)=24-\left(x-4\right)^{2}
Multiply 4 and 6 to get 24.
x^{2}\times 2-5x\left(x-4\right)=24-\left(x^{2}-8x+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=24-x^{2}+8x-16
To find the opposite of x^{2}-8x+16, find the opposite of each term.
x^{2}\times 2-5x\left(x-4\right)=8-x^{2}+8x
Subtract 16 from 24 to get 8.
x^{2}\times 2-5x\left(x-4\right)-8=-x^{2}+8x
Subtract 8 from both sides.
x^{2}\times 2-5x\left(x-4\right)-8+x^{2}=8x
Add x^{2} to both sides.
x^{2}\times 2-5x\left(x-4\right)-8+x^{2}-8x=0
Subtract 8x from both sides.
x^{2}\times 2-5x^{2}+20x-8+x^{2}-8x=0
Use the distributive property to multiply -5x by x-4.
-3x^{2}+20x-8+x^{2}-8x=0
Combine x^{2}\times 2 and -5x^{2} to get -3x^{2}.
-2x^{2}+20x-8-8x=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}+12x-8=0
Combine 20x and -8x to get 12x.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 12 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
Square 12.
x=\frac{-12±\sqrt{144+8\left(-8\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-12±\sqrt{144-64}}{2\left(-2\right)}
Multiply 8 times -8.
x=\frac{-12±\sqrt{80}}{2\left(-2\right)}
Add 144 to -64.
x=\frac{-12±4\sqrt{5}}{2\left(-2\right)}
Take the square root of 80.
x=\frac{-12±4\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{5}-12}{-4}
Now solve the equation x=\frac{-12±4\sqrt{5}}{-4} when ± is plus. Add -12 to 4\sqrt{5}.
x=3-\sqrt{5}
Divide -12+4\sqrt{5} by -4.
x=\frac{-4\sqrt{5}-12}{-4}
Now solve the equation x=\frac{-12±4\sqrt{5}}{-4} when ± is minus. Subtract 4\sqrt{5} from -12.
x=\sqrt{5}+3
Divide -12-4\sqrt{5} by -4.
x=3-\sqrt{5} x=\sqrt{5}+3
The equation is now solved.
x^{2}\left(\sqrt{2}\right)^{2}-5x\left(x-4\right)=\left(2\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Expand \left(x\sqrt{2}\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=\left(2\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
The square of \sqrt{2} is 2.
x^{2}\times 2-5x\left(x-4\right)=2^{2}\left(\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Expand \left(2\sqrt{6}\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=4\left(\sqrt{6}\right)^{2}-\left(x-4\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}\times 2-5x\left(x-4\right)=4\times 6-\left(x-4\right)^{2}
The square of \sqrt{6} is 6.
x^{2}\times 2-5x\left(x-4\right)=24-\left(x-4\right)^{2}
Multiply 4 and 6 to get 24.
x^{2}\times 2-5x\left(x-4\right)=24-\left(x^{2}-8x+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}\times 2-5x\left(x-4\right)=24-x^{2}+8x-16
To find the opposite of x^{2}-8x+16, find the opposite of each term.
x^{2}\times 2-5x\left(x-4\right)=8-x^{2}+8x
Subtract 16 from 24 to get 8.
x^{2}\times 2-5x\left(x-4\right)+x^{2}=8+8x
Add x^{2} to both sides.
x^{2}\times 2-5x\left(x-4\right)+x^{2}-8x=8
Subtract 8x from both sides.
x^{2}\times 2-5x^{2}+20x+x^{2}-8x=8
Use the distributive property to multiply -5x by x-4.
-3x^{2}+20x+x^{2}-8x=8
Combine x^{2}\times 2 and -5x^{2} to get -3x^{2}.
-2x^{2}+20x-8x=8
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}+12x=8
Combine 20x and -8x to get 12x.
\frac{-2x^{2}+12x}{-2}=\frac{8}{-2}
Divide both sides by -2.
x^{2}+\frac{12}{-2}x=\frac{8}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-6x=\frac{8}{-2}
Divide 12 by -2.
x^{2}-6x=-4
Divide 8 by -2.
x^{2}-6x+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-4+9
Square -3.
x^{2}-6x+9=5
Add -4 to 9.
\left(x-3\right)^{2}=5
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-3=\sqrt{5} x-3=-\sqrt{5}
Simplify.
x=\sqrt{5}+3 x=3-\sqrt{5}
Add 3 to both sides of the equation.