Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{3y_{4}-z^{2}-509}{y}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&y_{4}=\frac{z^{2}+509}{3}\text{ and }y=0\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{3y_{4}-z^{2}-509}{x}\text{, }&x\neq 0\\y\in \mathrm{C}\text{, }&y_{4}=\frac{z^{2}+509}{3}\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{3y_{4}-z^{2}-509}{y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&y_{4}=\frac{z^{2}+509}{3}\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{3y_{4}-z^{2}-509}{x}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&y_{4}=\frac{z^{2}+509}{3}\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Multiply z and z to get z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Multiply 4 and 8 to get 32.
xy-z^{2}+3+y_{4}\times 3=512
Multiply 32 and 16 to get 512.
xy+3+y_{4}\times 3=512+z^{2}
Add z^{2} to both sides.
xy+y_{4}\times 3=512+z^{2}-3
Subtract 3 from both sides.
xy+y_{4}\times 3=509+z^{2}
Subtract 3 from 512 to get 509.
xy=509+z^{2}-y_{4}\times 3
Subtract y_{4}\times 3 from both sides.
xy=509+z^{2}-3y_{4}
Multiply -1 and 3 to get -3.
yx=509+z^{2}-3y_{4}
The equation is in standard form.
\frac{yx}{y}=\frac{509+z^{2}-3y_{4}}{y}
Divide both sides by y.
x=\frac{509+z^{2}-3y_{4}}{y}
Dividing by y undoes the multiplication by y.
xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Multiply z and z to get z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Multiply 4 and 8 to get 32.
xy-z^{2}+3+y_{4}\times 3=512
Multiply 32 and 16 to get 512.
xy+3+y_{4}\times 3=512+z^{2}
Add z^{2} to both sides.
xy+y_{4}\times 3=512+z^{2}-3
Subtract 3 from both sides.
xy+y_{4}\times 3=509+z^{2}
Subtract 3 from 512 to get 509.
xy=509+z^{2}-y_{4}\times 3
Subtract y_{4}\times 3 from both sides.
xy=509+z^{2}-3y_{4}
Multiply -1 and 3 to get -3.
\frac{xy}{x}=\frac{509+z^{2}-3y_{4}}{x}
Divide both sides by x.
y=\frac{509+z^{2}-3y_{4}}{x}
Dividing by x undoes the multiplication by x.
xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Multiply z and z to get z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Multiply 4 and 8 to get 32.
xy-z^{2}+3+y_{4}\times 3=512
Multiply 32 and 16 to get 512.
xy+3+y_{4}\times 3=512+z^{2}
Add z^{2} to both sides.
xy+y_{4}\times 3=512+z^{2}-3
Subtract 3 from both sides.
xy+y_{4}\times 3=509+z^{2}
Subtract 3 from 512 to get 509.
xy=509+z^{2}-y_{4}\times 3
Subtract y_{4}\times 3 from both sides.
xy=509+z^{2}-3y_{4}
Multiply -1 and 3 to get -3.
yx=509+z^{2}-3y_{4}
The equation is in standard form.
\frac{yx}{y}=\frac{509+z^{2}-3y_{4}}{y}
Divide both sides by y.
x=\frac{509+z^{2}-3y_{4}}{y}
Dividing by y undoes the multiplication by y.
xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Multiply z and z to get z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Multiply 4 and 8 to get 32.
xy-z^{2}+3+y_{4}\times 3=512
Multiply 32 and 16 to get 512.
xy+3+y_{4}\times 3=512+z^{2}
Add z^{2} to both sides.
xy+y_{4}\times 3=512+z^{2}-3
Subtract 3 from both sides.
xy+y_{4}\times 3=509+z^{2}
Subtract 3 from 512 to get 509.
xy=509+z^{2}-y_{4}\times 3
Subtract y_{4}\times 3 from both sides.
xy=509+z^{2}-3y_{4}
Multiply -1 and 3 to get -3.
\frac{xy}{x}=\frac{509+z^{2}-3y_{4}}{x}
Divide both sides by x.
y=\frac{509+z^{2}-3y_{4}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}