( x ^ { 3 } + y ^ { 3 } ) d x - x ^ { 2 } y d x = 0
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\sqrt[3]{\frac{\sqrt{69}\left(|y|\right)^{3}}{18}-\frac{25y^{3}}{54}}+\sqrt[3]{-\frac{\sqrt{69}\left(|y|\right)^{3}}{18}-\frac{25y^{3}}{54}}+\frac{y}{3}\text{ or }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{2^{\frac{2}{3}}\left(\sqrt[3]{3\sqrt{69}\left(|y|\right)^{3}-25y^{3}}+\sqrt[3]{-3\sqrt{69}\left(|y|\right)^{3}-25y^{3}}+\sqrt[3]{2}y\right)}{6}\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{3}+y^{3}\right)dx-x^{3}yd=0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(x^{3}d+y^{3}d\right)x-x^{3}yd=0
Use the distributive property to multiply x^{3}+y^{3} by d.
dx^{4}+y^{3}dx-x^{3}yd=0
Use the distributive property to multiply x^{3}d+y^{3}d by x.
dx^{4}+dxy^{3}-dyx^{3}=0
Reorder the terms.
\left(x^{4}+xy^{3}-yx^{3}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by x^{4}+xy^{3}-yx^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}