Evaluate
1-x+x^{2}-x^{4}
Expand
1-x+x^{2}-x^{4}
Graph
Share
Copied to clipboard
x^{3}\left(-x\right)+x^{3}+x^{2}\left(-x\right)+x^{2}-x+1
Use the distributive property to multiply x^{3}+x^{2}+1 by -x+1.
x^{4}\left(-1\right)+x^{3}+x^{2}\left(-1\right)x+x^{2}-x+1
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
x^{4}\left(-1\right)+x^{3}+x^{3}\left(-1\right)+x^{2}-x+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}\left(-1\right)+x^{2}-x+1
Combine x^{3} and x^{3}\left(-1\right) to get 0.
x^{3}\left(-x\right)+x^{3}+x^{2}\left(-x\right)+x^{2}-x+1
Use the distributive property to multiply x^{3}+x^{2}+1 by -x+1.
x^{4}\left(-1\right)+x^{3}+x^{2}\left(-1\right)x+x^{2}-x+1
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
x^{4}\left(-1\right)+x^{3}+x^{3}\left(-1\right)+x^{2}-x+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}\left(-1\right)+x^{2}-x+1
Combine x^{3} and x^{3}\left(-1\right) to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}