Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(x^{2}\right)^{4}\left(y^{3}\right)^{4}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Expand \left(x^{2}y^{3}\right)^{4}.
\frac{x^{8}\left(y^{3}\right)^{4}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{x^{8}y^{12}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{x^{8}y^{12}}{\left(-x^{2}\right)^{2}\left(y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Expand \left(\left(-x^{2}\right)y^{3}\right)^{2}.
\frac{x^{8}y^{12}}{\left(-x^{2}\right)^{2}y^{6}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{x^{8}y^{12}}{\left(x^{2}\right)^{2}y^{6}}\left(x^{2}y^{3}\right)^{2}
Calculate -x^{2} to the power of 2 and get \left(x^{2}\right)^{2}.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Cancel out y^{6} in both numerator and denominator.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}
Expand \left(x^{2}y^{3}\right)^{2}.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4}\left(y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4}y^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{y^{6}x^{8}x^{4}}{\left(x^{2}\right)^{2}}y^{6}
Express \frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4} as a single fraction.
\frac{y^{6}x^{8}x^{4}y^{6}}{\left(x^{2}\right)^{2}}
Express \frac{y^{6}x^{8}x^{4}}{\left(x^{2}\right)^{2}}y^{6} as a single fraction.
\frac{y^{12}x^{8}x^{4}}{\left(x^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{y^{12}x^{12}}{\left(x^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 8 and 4 to get 12.
\frac{y^{12}x^{12}}{x^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}y^{12}
Cancel out x^{4} in both numerator and denominator.
\frac{\left(x^{2}\right)^{4}\left(y^{3}\right)^{4}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Expand \left(x^{2}y^{3}\right)^{4}.
\frac{x^{8}\left(y^{3}\right)^{4}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{x^{8}y^{12}}{\left(\left(-x^{2}\right)y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{x^{8}y^{12}}{\left(-x^{2}\right)^{2}\left(y^{3}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Expand \left(\left(-x^{2}\right)y^{3}\right)^{2}.
\frac{x^{8}y^{12}}{\left(-x^{2}\right)^{2}y^{6}}\left(x^{2}y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{x^{8}y^{12}}{\left(x^{2}\right)^{2}y^{6}}\left(x^{2}y^{3}\right)^{2}
Calculate -x^{2} to the power of 2 and get \left(x^{2}\right)^{2}.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}\left(x^{2}y^{3}\right)^{2}
Cancel out y^{6} in both numerator and denominator.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}
Expand \left(x^{2}y^{3}\right)^{2}.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4}\left(y^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4}y^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{y^{6}x^{8}x^{4}}{\left(x^{2}\right)^{2}}y^{6}
Express \frac{y^{6}x^{8}}{\left(x^{2}\right)^{2}}x^{4} as a single fraction.
\frac{y^{6}x^{8}x^{4}y^{6}}{\left(x^{2}\right)^{2}}
Express \frac{y^{6}x^{8}x^{4}}{\left(x^{2}\right)^{2}}y^{6} as a single fraction.
\frac{y^{12}x^{8}x^{4}}{\left(x^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{y^{12}x^{12}}{\left(x^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 8 and 4 to get 12.
\frac{y^{12}x^{12}}{x^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}y^{12}
Cancel out x^{4} in both numerator and denominator.