Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\left(x^{2}-x-6\right)\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Square both sides of the equation.
\left(x^{2}\sqrt{x-1}-x\sqrt{x-1}-6\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply x^{2}-x-6 by \sqrt{x-1}.
\left(\sqrt{x-1}\right)^{2}x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Square x^{2}\sqrt{x-1}-x\sqrt{x-1}-6\sqrt{x-1}.
\left(x-1\right)x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply x-1 by x^{4}.
x^{5}-x^{4}-2\left(x-1\right)x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-x^{4}+\left(-2x+2\right)x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -2 by x-1.
x^{5}-x^{4}-2x^{4}+2x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -2x+2 by x^{3}.
x^{5}-3x^{4}+2x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine -x^{4} and -2x^{4} to get -3x^{4}.
x^{5}-3x^{4}+2x^{3}-11\left(x-1\right)x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}+2x^{3}+\left(-11x+11\right)x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -11 by x-1.
x^{5}-3x^{4}+2x^{3}-11x^{3}+11x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -11x+11 by x^{2}.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine 2x^{3} and -11x^{3} to get -9x^{3}.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x\left(x-1\right)+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x^{2}-12x+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply 12x by x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine 11x^{2} and 12x^{2} to get 23x^{2}.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36\left(x-1\right)=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36x-36=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply 36 by x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36=\left(2x^{2}-2x-12\right)^{2}
Combine -12x and 36x to get 24x.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36=4x^{4}-8x^{3}-44x^{2}+48x+144
Square 2x^{2}-2x-12.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36-4x^{4}=-8x^{3}-44x^{2}+48x+144
Subtract 4x^{4} from both sides.
x^{5}-7x^{4}-9x^{3}+23x^{2}+24x-36=-8x^{3}-44x^{2}+48x+144
Combine -3x^{4} and -4x^{4} to get -7x^{4}.
x^{5}-7x^{4}-9x^{3}+23x^{2}+24x-36+8x^{3}=-44x^{2}+48x+144
Add 8x^{3} to both sides.
x^{5}-7x^{4}-x^{3}+23x^{2}+24x-36=-44x^{2}+48x+144
Combine -9x^{3} and 8x^{3} to get -x^{3}.
x^{5}-7x^{4}-x^{3}+23x^{2}+24x-36+44x^{2}=48x+144
Add 44x^{2} to both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}+24x-36=48x+144
Combine 23x^{2} and 44x^{2} to get 67x^{2}.
x^{5}-7x^{4}-x^{3}+67x^{2}+24x-36-48x=144
Subtract 48x from both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-36=144
Combine 24x and -48x to get -24x.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-36-144=0
Subtract 144 from both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-180=0
Subtract 144 from -36 to get -180.
±180,±90,±60,±45,±36,±30,±20,±18,±15,±12,±10,±9,±6,±5,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -180 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{4}-9x^{3}+17x^{2}+33x-90=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{5}-7x^{4}-x^{3}+67x^{2}-24x-180 by x+2 to get x^{4}-9x^{3}+17x^{2}+33x-90. Solve the equation where the result equals to 0.
±90,±45,±30,±18,±15,±10,±9,±6,±5,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -90 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-11x^{2}+39x-45=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-9x^{3}+17x^{2}+33x-90 by x+2 to get x^{3}-11x^{2}+39x-45. Solve the equation where the result equals to 0.
±45,±15,±9,±5,±3,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -45 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-8x+15=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-11x^{2}+39x-45 by x-3 to get x^{2}-8x+15. Solve the equation where the result equals to 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 15}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and 15 for c in the quadratic formula.
x=\frac{8±2}{2}
Do the calculations.
x=3 x=5
Solve the equation x^{2}-8x+15=0 when ± is plus and when ± is minus.
x=-2 x=3 x=5
List all found solutions.
\left(\left(-2\right)^{2}-\left(-2\right)-6\right)\sqrt{-2-1}=2\left(-2\right)^{2}-2\left(-2\right)-12
Substitute -2 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12.
0=0
Simplify. The value x=-2 satisfies the equation.
\left(3^{2}-3-6\right)\sqrt{3-1}=2\times 3^{2}-2\times 3-12
Substitute 3 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12.
0=0
Simplify. The value x=3 satisfies the equation.
\left(5^{2}-5-6\right)\sqrt{5-1}=2\times 5^{2}-2\times 5-12
Substitute 5 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12.
28=28
Simplify. The value x=5 satisfies the equation.
x=-2 x=3 x=5
List all solutions of \sqrt{x-1}\left(x^{2}-x-6\right)=2x^{2}-2x-12.
\left(\left(x^{2}-x-6\right)\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Square both sides of the equation.
\left(x^{2}\sqrt{x-1}-x\sqrt{x-1}-6\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply x^{2}-x-6 by \sqrt{x-1}.
\left(\sqrt{x-1}\right)^{2}x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Square x^{2}\sqrt{x-1}-x\sqrt{x-1}-6\sqrt{x-1}.
\left(x-1\right)x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-x^{4}-2\left(\sqrt{x-1}\right)^{2}x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply x-1 by x^{4}.
x^{5}-x^{4}-2\left(x-1\right)x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-x^{4}+\left(-2x+2\right)x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -2 by x-1.
x^{5}-x^{4}-2x^{4}+2x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -2x+2 by x^{3}.
x^{5}-3x^{4}+2x^{3}-11\left(\sqrt{x-1}\right)^{2}x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine -x^{4} and -2x^{4} to get -3x^{4}.
x^{5}-3x^{4}+2x^{3}-11\left(x-1\right)x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}+2x^{3}+\left(-11x+11\right)x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -11 by x-1.
x^{5}-3x^{4}+2x^{3}-11x^{3}+11x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply -11x+11 by x^{2}.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x\left(\sqrt{x-1}\right)^{2}+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine 2x^{3} and -11x^{3} to get -9x^{3}.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x\left(x-1\right)+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}-9x^{3}+11x^{2}+12x^{2}-12x+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply 12x by x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36\left(\sqrt{x-1}\right)^{2}=\left(2x^{2}-2x-12\right)^{2}
Combine 11x^{2} and 12x^{2} to get 23x^{2}.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36\left(x-1\right)=\left(2x^{2}-2x-12\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}-12x+36x-36=\left(2x^{2}-2x-12\right)^{2}
Use the distributive property to multiply 36 by x-1.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36=\left(2x^{2}-2x-12\right)^{2}
Combine -12x and 36x to get 24x.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36=4x^{4}-8x^{3}-44x^{2}+48x+144
Square 2x^{2}-2x-12.
x^{5}-3x^{4}-9x^{3}+23x^{2}+24x-36-4x^{4}=-8x^{3}-44x^{2}+48x+144
Subtract 4x^{4} from both sides.
x^{5}-7x^{4}-9x^{3}+23x^{2}+24x-36=-8x^{3}-44x^{2}+48x+144
Combine -3x^{4} and -4x^{4} to get -7x^{4}.
x^{5}-7x^{4}-9x^{3}+23x^{2}+24x-36+8x^{3}=-44x^{2}+48x+144
Add 8x^{3} to both sides.
x^{5}-7x^{4}-x^{3}+23x^{2}+24x-36=-44x^{2}+48x+144
Combine -9x^{3} and 8x^{3} to get -x^{3}.
x^{5}-7x^{4}-x^{3}+23x^{2}+24x-36+44x^{2}=48x+144
Add 44x^{2} to both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}+24x-36=48x+144
Combine 23x^{2} and 44x^{2} to get 67x^{2}.
x^{5}-7x^{4}-x^{3}+67x^{2}+24x-36-48x=144
Subtract 48x from both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-36=144
Combine 24x and -48x to get -24x.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-36-144=0
Subtract 144 from both sides.
x^{5}-7x^{4}-x^{3}+67x^{2}-24x-180=0
Subtract 144 from -36 to get -180.
±180,±90,±60,±45,±36,±30,±20,±18,±15,±12,±10,±9,±6,±5,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -180 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{4}-9x^{3}+17x^{2}+33x-90=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{5}-7x^{4}-x^{3}+67x^{2}-24x-180 by x+2 to get x^{4}-9x^{3}+17x^{2}+33x-90. Solve the equation where the result equals to 0.
±90,±45,±30,±18,±15,±10,±9,±6,±5,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -90 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-11x^{2}+39x-45=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-9x^{3}+17x^{2}+33x-90 by x+2 to get x^{3}-11x^{2}+39x-45. Solve the equation where the result equals to 0.
±45,±15,±9,±5,±3,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -45 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-8x+15=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-11x^{2}+39x-45 by x-3 to get x^{2}-8x+15. Solve the equation where the result equals to 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 15}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and 15 for c in the quadratic formula.
x=\frac{8±2}{2}
Do the calculations.
x=3 x=5
Solve the equation x^{2}-8x+15=0 when ± is plus and when ± is minus.
x=-2 x=3 x=5
List all found solutions.
\left(\left(-2\right)^{2}-\left(-2\right)-6\right)\sqrt{-2-1}=2\left(-2\right)^{2}-2\left(-2\right)-12
Substitute -2 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12. The expression \sqrt{-2-1} is undefined because the radicand cannot be negative.
\left(3^{2}-3-6\right)\sqrt{3-1}=2\times 3^{2}-2\times 3-12
Substitute 3 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12.
0=0
Simplify. The value x=3 satisfies the equation.
\left(5^{2}-5-6\right)\sqrt{5-1}=2\times 5^{2}-2\times 5-12
Substitute 5 for x in the equation \left(x^{2}-x-6\right)\sqrt{x-1}=2x^{2}-2x-12.
28=28
Simplify. The value x=5 satisfies the equation.
x=3 x=5
List all solutions of \sqrt{x-1}\left(x^{2}-x-6\right)=2x^{2}-2x-12.