Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-x+8\right)=4\left(4x-6\right)+48
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-3x+24=4\left(4x-6\right)+48
Use the distributive property to multiply 3 by x^{2}-x+8.
3x^{2}-3x+24=16x-24+48
Use the distributive property to multiply 4 by 4x-6.
3x^{2}-3x+24=16x+24
Add -24 and 48 to get 24.
3x^{2}-3x+24-16x=24
Subtract 16x from both sides.
3x^{2}-19x+24=24
Combine -3x and -16x to get -19x.
3x^{2}-19x+24-24=0
Subtract 24 from both sides.
3x^{2}-19x=0
Subtract 24 from 24 to get 0.
x\left(3x-19\right)=0
Factor out x.
x=0 x=\frac{19}{3}
To find equation solutions, solve x=0 and 3x-19=0.
3\left(x^{2}-x+8\right)=4\left(4x-6\right)+48
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-3x+24=4\left(4x-6\right)+48
Use the distributive property to multiply 3 by x^{2}-x+8.
3x^{2}-3x+24=16x-24+48
Use the distributive property to multiply 4 by 4x-6.
3x^{2}-3x+24=16x+24
Add -24 and 48 to get 24.
3x^{2}-3x+24-16x=24
Subtract 16x from both sides.
3x^{2}-19x+24=24
Combine -3x and -16x to get -19x.
3x^{2}-19x+24-24=0
Subtract 24 from both sides.
3x^{2}-19x=0
Subtract 24 from 24 to get 0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -19 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±19}{2\times 3}
Take the square root of \left(-19\right)^{2}.
x=\frac{19±19}{2\times 3}
The opposite of -19 is 19.
x=\frac{19±19}{6}
Multiply 2 times 3.
x=\frac{38}{6}
Now solve the equation x=\frac{19±19}{6} when ± is plus. Add 19 to 19.
x=\frac{19}{3}
Reduce the fraction \frac{38}{6} to lowest terms by extracting and canceling out 2.
x=\frac{0}{6}
Now solve the equation x=\frac{19±19}{6} when ± is minus. Subtract 19 from 19.
x=0
Divide 0 by 6.
x=\frac{19}{3} x=0
The equation is now solved.
3\left(x^{2}-x+8\right)=4\left(4x-6\right)+48
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-3x+24=4\left(4x-6\right)+48
Use the distributive property to multiply 3 by x^{2}-x+8.
3x^{2}-3x+24=16x-24+48
Use the distributive property to multiply 4 by 4x-6.
3x^{2}-3x+24=16x+24
Add -24 and 48 to get 24.
3x^{2}-3x+24-16x=24
Subtract 16x from both sides.
3x^{2}-19x+24=24
Combine -3x and -16x to get -19x.
3x^{2}-19x=24-24
Subtract 24 from both sides.
3x^{2}-19x=0
Subtract 24 from 24 to get 0.
\frac{3x^{2}-19x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}-\frac{19}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{19}{3}x=0
Divide 0 by 3.
x^{2}-\frac{19}{3}x+\left(-\frac{19}{6}\right)^{2}=\left(-\frac{19}{6}\right)^{2}
Divide -\frac{19}{3}, the coefficient of the x term, by 2 to get -\frac{19}{6}. Then add the square of -\frac{19}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{3}x+\frac{361}{36}=\frac{361}{36}
Square -\frac{19}{6} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{19}{6}\right)^{2}=\frac{361}{36}
Factor x^{2}-\frac{19}{3}x+\frac{361}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{6}\right)^{2}}=\sqrt{\frac{361}{36}}
Take the square root of both sides of the equation.
x-\frac{19}{6}=\frac{19}{6} x-\frac{19}{6}=-\frac{19}{6}
Simplify.
x=\frac{19}{3} x=0
Add \frac{19}{6} to both sides of the equation.