Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-8\right)±\sqrt{80}}{2}
Add 64 to 16.
x=\frac{-\left(-8\right)±4\sqrt{5}}{2}
Take the square root of 80.
x=\frac{8±4\sqrt{5}}{2}
The opposite of -8 is 8.
x=\frac{4\sqrt{5}+8}{2}
Now solve the equation x=\frac{8±4\sqrt{5}}{2} when ± is plus. Add 8 to 4\sqrt{5}.
x=2\sqrt{5}+4
Divide 8+4\sqrt{5} by 2.
x=\frac{8-4\sqrt{5}}{2}
Now solve the equation x=\frac{8±4\sqrt{5}}{2} when ± is minus. Subtract 4\sqrt{5} from 8.
x=4-2\sqrt{5}
Divide 8-4\sqrt{5} by 2.
x^{2}-8x-4=\left(x-\left(2\sqrt{5}+4\right)\right)\left(x-\left(4-2\sqrt{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4+2\sqrt{5} for x_{1} and 4-2\sqrt{5} for x_{2}.