Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6x-4-5x+3
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-11x-4+3
Combine -6x and -5x to get -11x.
3x^{2}-11x-1
Add -4 and 3 to get -1.
factor(3x^{2}-6x-4-5x+3)
Combine x^{2} and 2x^{2} to get 3x^{2}.
factor(3x^{2}-11x-4+3)
Combine -6x and -5x to get -11x.
factor(3x^{2}-11x-1)
Add -4 and 3 to get -1.
3x^{2}-11x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-1\right)}}{2\times 3}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11\right)±\sqrt{121+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-\left(-11\right)±\sqrt{133}}{2\times 3}
Add 121 to 12.
x=\frac{11±\sqrt{133}}{2\times 3}
The opposite of -11 is 11.
x=\frac{11±\sqrt{133}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{133}+11}{6}
Now solve the equation x=\frac{11±\sqrt{133}}{6} when ± is plus. Add 11 to \sqrt{133}.
x=\frac{11-\sqrt{133}}{6}
Now solve the equation x=\frac{11±\sqrt{133}}{6} when ± is minus. Subtract \sqrt{133} from 11.
3x^{2}-11x-1=3\left(x-\frac{\sqrt{133}+11}{6}\right)\left(x-\frac{11-\sqrt{133}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{133}}{6} for x_{1} and \frac{11-\sqrt{133}}{6} for x_{2}.