Solve for x
x=\frac{5-\sqrt{29}}{2}\approx -0.192582404
x = \frac{\sqrt{29} + 5}{2} \approx 5.192582404
x=4
x=1
Graph
Share
Copied to clipboard
x^{4}-10x^{3}+29x^{2}-20x+4-\left(x^{2}-5x\right)=8
Square x^{2}-5x+2.
x^{4}-10x^{3}+29x^{2}-20x+4-x^{2}+5x=8
To find the opposite of x^{2}-5x, find the opposite of each term.
x^{4}-10x^{3}+28x^{2}-20x+4+5x=8
Combine 29x^{2} and -x^{2} to get 28x^{2}.
x^{4}-10x^{3}+28x^{2}-15x+4=8
Combine -20x and 5x to get -15x.
x^{4}-10x^{3}+28x^{2}-15x+4-8=0
Subtract 8 from both sides.
x^{4}-10x^{3}+28x^{2}-15x-4=0
Subtract 8 from 4 to get -4.
±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -4 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-9x^{2}+19x+4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-10x^{3}+28x^{2}-15x-4 by x-1 to get x^{3}-9x^{2}+19x+4. Solve the equation where the result equals to 0.
±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-5x-1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-9x^{2}+19x+4 by x-4 to get x^{2}-5x-1. Solve the equation where the result equals to 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-1\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -5 for b, and -1 for c in the quadratic formula.
x=\frac{5±\sqrt{29}}{2}
Do the calculations.
x=\frac{5-\sqrt{29}}{2} x=\frac{\sqrt{29}+5}{2}
Solve the equation x^{2}-5x-1=0 when ± is plus and when ± is minus.
x=1 x=4 x=\frac{5-\sqrt{29}}{2} x=\frac{\sqrt{29}+5}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}