Solve for x
x\neq \frac{3}{4}
Graph
Share
Copied to clipboard
\left(x^{2}-2x+2\right)\left(4x-3\right)^{-1}\left(4x-3\right)=x^{2}-2x+2
Variable x cannot be equal to \frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 4x-3.
\left(x^{2}\left(4x-3\right)^{-1}-2x\left(4x-3\right)^{-1}+2\left(4x-3\right)^{-1}\right)\left(4x-3\right)=x^{2}-2x+2
Use the distributive property to multiply x^{2}-2x+2 by \left(4x-3\right)^{-1}.
4\left(4x-3\right)^{-1}x^{3}-11x^{2}\left(4x-3\right)^{-1}+14x\left(4x-3\right)^{-1}-6\left(4x-3\right)^{-1}=x^{2}-2x+2
Use the distributive property to multiply x^{2}\left(4x-3\right)^{-1}-2x\left(4x-3\right)^{-1}+2\left(4x-3\right)^{-1} by 4x-3 and combine like terms.
4\left(4x-3\right)^{-1}x^{3}-11x^{2}\left(4x-3\right)^{-1}+14x\left(4x-3\right)^{-1}-6\left(4x-3\right)^{-1}-x^{2}=-2x+2
Subtract x^{2} from both sides.
4\left(4x-3\right)^{-1}x^{3}-11x^{2}\left(4x-3\right)^{-1}+14x\left(4x-3\right)^{-1}-6\left(4x-3\right)^{-1}-x^{2}+2x=2
Add 2x to both sides.
4\left(4x-3\right)^{-1}x^{3}-11x^{2}\left(4x-3\right)^{-1}+14x\left(4x-3\right)^{-1}-6\left(4x-3\right)^{-1}-x^{2}+2x-2=0
Subtract 2 from both sides.
4\times \frac{1}{4x-3}x^{3}-x^{2}-11\times \frac{1}{4x-3}x^{2}+2x+14\times \frac{1}{4x-3}x-2-6\times \frac{1}{4x-3}=0
Reorder the terms.
4\times 1x^{3}-x^{2}\left(4x-3\right)-11x^{2}+2x\left(4x-3\right)+14\times 1x+\left(4x-3\right)\left(-2\right)-6=0
Variable x cannot be equal to \frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 4x-3.
4x^{3}-x^{2}\left(4x-3\right)-11x^{2}+2x\left(4x-3\right)+14x+\left(4x-3\right)\left(-2\right)-6=0
Do the multiplications.
4x^{3}-4x^{3}+3x^{2}-11x^{2}+2x\left(4x-3\right)+14x+\left(4x-3\right)\left(-2\right)-6=0
Use the distributive property to multiply -x^{2} by 4x-3.
3x^{2}-11x^{2}+2x\left(4x-3\right)+14x+\left(4x-3\right)\left(-2\right)-6=0
Combine 4x^{3} and -4x^{3} to get 0.
-8x^{2}+2x\left(4x-3\right)+14x+\left(4x-3\right)\left(-2\right)-6=0
Combine 3x^{2} and -11x^{2} to get -8x^{2}.
-8x^{2}+8x^{2}-6x+14x+\left(4x-3\right)\left(-2\right)-6=0
Use the distributive property to multiply 2x by 4x-3.
-6x+14x+\left(4x-3\right)\left(-2\right)-6=0
Combine -8x^{2} and 8x^{2} to get 0.
8x+\left(4x-3\right)\left(-2\right)-6=0
Combine -6x and 14x to get 8x.
8x-8x+6-6=0
Use the distributive property to multiply 4x-3 by -2.
6-6=0
Combine 8x and -8x to get 0.
0=0
Subtract 6 from 6 to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus \frac{3}{4}
Variable x cannot be equal to \frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}