Solve for x
x=\frac{-\sqrt{5}-1}{2}\approx -1.618033989
x=2
x=\frac{\sqrt{5}-1}{2}\approx 0.618033989
x=-1
Graph
Share
Copied to clipboard
\left(x^{2}\right)^{2}-4x^{2}+4=x+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2\right)^{2}.
x^{4}-4x^{2}+4=x+2
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-4x^{2}+4-x=2
Subtract x from both sides.
x^{4}-4x^{2}+4-x-2=0
Subtract 2 from both sides.
x^{4}-4x^{2}+2-x=0
Subtract 2 from 4 to get 2.
x^{4}-4x^{2}-x+2=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 2 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-x^{2}-3x+2=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-4x^{2}-x+2 by x+1 to get x^{3}-x^{2}-3x+2. Solve the equation where the result equals to 0.
±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 2 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+x-1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-x^{2}-3x+2 by x-2 to get x^{2}+x-1. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-1\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -1 for c in the quadratic formula.
x=\frac{-1±\sqrt{5}}{2}
Do the calculations.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Solve the equation x^{2}+x-1=0 when ± is plus and when ± is minus.
x=-1 x=2 x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}