Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}-32x^{2}+256-10\left(x^{2}-16\right)+9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-16\right)^{2}.
x^{4}-32x^{2}+256-10\left(x^{2}-16\right)+9=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-32x^{2}+256-10x^{2}+160+9=0
Use the distributive property to multiply -10 by x^{2}-16.
x^{4}-42x^{2}+256+160+9=0
Combine -32x^{2} and -10x^{2} to get -42x^{2}.
x^{4}-42x^{2}+416+9=0
Add 256 and 160 to get 416.
x^{4}-42x^{2}+425=0
Add 416 and 9 to get 425.
t^{2}-42t+425=0
Substitute t for x^{2}.
t=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 1\times 425}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -42 for b, and 425 for c in the quadratic formula.
t=\frac{42±8}{2}
Do the calculations.
t=25 t=17
Solve the equation t=\frac{42±8}{2} when ± is plus and when ± is minus.
x=5 x=-5 x=\sqrt{17} x=-\sqrt{17}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.