Solve for x
x=-5
x=5
x=\sqrt{17}\approx 4.123105626
x=-\sqrt{17}\approx -4.123105626
Graph
Quiz
Quadratic Equation
5 problems similar to:
( x ^ { 2 } - 16 ) ^ { 2 } - 10 ( x ^ { 2 } - 16 ) + 9 = 0
Share
Copied to clipboard
\left(x^{2}\right)^{2}-32x^{2}+256-10\left(x^{2}-16\right)+9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-16\right)^{2}.
x^{4}-32x^{2}+256-10\left(x^{2}-16\right)+9=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-32x^{2}+256-10x^{2}+160+9=0
Use the distributive property to multiply -10 by x^{2}-16.
x^{4}-42x^{2}+256+160+9=0
Combine -32x^{2} and -10x^{2} to get -42x^{2}.
x^{4}-42x^{2}+416+9=0
Add 256 and 160 to get 416.
x^{4}-42x^{2}+425=0
Add 416 and 9 to get 425.
t^{2}-42t+425=0
Substitute t for x^{2}.
t=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 1\times 425}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -42 for b, and 425 for c in the quadratic formula.
t=\frac{42±8}{2}
Do the calculations.
t=25 t=17
Solve the equation t=\frac{42±8}{2} when ± is plus and when ± is minus.
x=5 x=-5 x=\sqrt{17} x=-\sqrt{17}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}