Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}-1\right)-6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}-1\right)-6=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{2}+1-x^{2}+1-6=0
To find the opposite of x^{2}-1, find the opposite of each term.
x^{4}-3x^{2}+1+1-6=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
x^{4}-3x^{2}+2-6=0
Add 1 and 1 to get 2.
x^{4}-3x^{2}-4=0
Subtract 6 from 2 to get -4.
t^{2}-3t-4=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -4 for c in the quadratic formula.
t=\frac{3±5}{2}
Do the calculations.
t=4 t=-1
Solve the equation t=\frac{3±5}{2} when ± is plus and when ± is minus.
x=-2 x=2 x=-i x=i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}-1\right)-6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}-1\right)-6=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{2}+1-x^{2}+1-6=0
To find the opposite of x^{2}-1, find the opposite of each term.
x^{4}-3x^{2}+1+1-6=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
x^{4}-3x^{2}+2-6=0
Add 1 and 1 to get 2.
x^{4}-3x^{2}-4=0
Subtract 6 from 2 to get -4.
t^{2}-3t-4=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -4 for c in the quadratic formula.
t=\frac{3±5}{2}
Do the calculations.
t=4 t=-1
Solve the equation t=\frac{3±5}{2} when ± is plus and when ± is minus.
x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.