Solve for x (complex solution)
x=2
x=-2
x=-i
x=i
Solve for x
x=-2
x=2
Graph
Share
Copied to clipboard
\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}-1\right)-6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}-1\right)-6=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{2}+1-x^{2}+1-6=0
To find the opposite of x^{2}-1, find the opposite of each term.
x^{4}-3x^{2}+1+1-6=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
x^{4}-3x^{2}+2-6=0
Add 1 and 1 to get 2.
x^{4}-3x^{2}-4=0
Subtract 6 from 2 to get -4.
t^{2}-3t-4=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -4 for c in the quadratic formula.
t=\frac{3±5}{2}
Do the calculations.
t=4 t=-1
Solve the equation t=\frac{3±5}{2} when ± is plus and when ± is minus.
x=-2 x=2 x=-i x=i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}-1\right)-6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}-1\right)-6=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{2}+1-x^{2}+1-6=0
To find the opposite of x^{2}-1, find the opposite of each term.
x^{4}-3x^{2}+1+1-6=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
x^{4}-3x^{2}+2-6=0
Add 1 and 1 to get 2.
x^{4}-3x^{2}-4=0
Subtract 6 from 2 to get -4.
t^{2}-3t-4=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -4 for c in the quadratic formula.
t=\frac{3±5}{2}
Do the calculations.
t=4 t=-1
Solve the equation t=\frac{3±5}{2} when ± is plus and when ± is minus.
x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}