Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-\frac{5}{9}\right)-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-\frac{5}{3}-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Use the distributive property to multiply 3 by x^{2}-\frac{5}{9}.
3x^{2}-\frac{5}{3}-12\times \frac{5}{9}=36-84\times \frac{1}{3}
Rewrite the square root of the division \frac{25}{81} as the division of square roots \frac{\sqrt{25}}{\sqrt{81}}. Take the square root of both numerator and denominator.
3x^{2}-\frac{5}{3}-\frac{20}{3}=36-84\times \frac{1}{3}
Multiply -12 and \frac{5}{9} to get -\frac{20}{3}.
3x^{2}-\frac{25}{3}=36-84\times \frac{1}{3}
Subtract \frac{20}{3} from -\frac{5}{3} to get -\frac{25}{3}.
3x^{2}-\frac{25}{3}=36-28
Multiply 84 and \frac{1}{3} to get 28.
3x^{2}-\frac{25}{3}=8
Subtract 28 from 36 to get 8.
3x^{2}-\frac{25}{3}-8=0
Subtract 8 from both sides.
3x^{2}-\frac{49}{3}=0
Subtract 8 from -\frac{25}{3} to get -\frac{49}{3}.
9x^{2}-49=0
Multiply both sides by 3.
\left(3x-7\right)\left(3x+7\right)=0
Consider 9x^{2}-49. Rewrite 9x^{2}-49 as \left(3x\right)^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{7}{3} x=-\frac{7}{3}
To find equation solutions, solve 3x-7=0 and 3x+7=0.
3\left(x^{2}-\frac{5}{9}\right)-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-\frac{5}{3}-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Use the distributive property to multiply 3 by x^{2}-\frac{5}{9}.
3x^{2}-\frac{5}{3}-12\times \frac{5}{9}=36-84\times \frac{1}{3}
Rewrite the square root of the division \frac{25}{81} as the division of square roots \frac{\sqrt{25}}{\sqrt{81}}. Take the square root of both numerator and denominator.
3x^{2}-\frac{5}{3}-\frac{20}{3}=36-84\times \frac{1}{3}
Multiply -12 and \frac{5}{9} to get -\frac{20}{3}.
3x^{2}-\frac{25}{3}=36-84\times \frac{1}{3}
Subtract \frac{20}{3} from -\frac{5}{3} to get -\frac{25}{3}.
3x^{2}-\frac{25}{3}=36-28
Multiply 84 and \frac{1}{3} to get 28.
3x^{2}-\frac{25}{3}=8
Subtract 28 from 36 to get 8.
3x^{2}=8+\frac{25}{3}
Add \frac{25}{3} to both sides.
3x^{2}=\frac{49}{3}
Add 8 and \frac{25}{3} to get \frac{49}{3}.
x^{2}=\frac{\frac{49}{3}}{3}
Divide both sides by 3.
x^{2}=\frac{49}{3\times 3}
Express \frac{\frac{49}{3}}{3} as a single fraction.
x^{2}=\frac{49}{9}
Multiply 3 and 3 to get 9.
x=\frac{7}{3} x=-\frac{7}{3}
Take the square root of both sides of the equation.
3\left(x^{2}-\frac{5}{9}\right)-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x^{2}-\frac{5}{3}-12\sqrt{\frac{25}{81}}=36-84\times \frac{1}{3}
Use the distributive property to multiply 3 by x^{2}-\frac{5}{9}.
3x^{2}-\frac{5}{3}-12\times \frac{5}{9}=36-84\times \frac{1}{3}
Rewrite the square root of the division \frac{25}{81} as the division of square roots \frac{\sqrt{25}}{\sqrt{81}}. Take the square root of both numerator and denominator.
3x^{2}-\frac{5}{3}-\frac{20}{3}=36-84\times \frac{1}{3}
Multiply -12 and \frac{5}{9} to get -\frac{20}{3}.
3x^{2}-\frac{25}{3}=36-84\times \frac{1}{3}
Subtract \frac{20}{3} from -\frac{5}{3} to get -\frac{25}{3}.
3x^{2}-\frac{25}{3}=36-28
Multiply 84 and \frac{1}{3} to get 28.
3x^{2}-\frac{25}{3}=8
Subtract 28 from 36 to get 8.
3x^{2}-\frac{25}{3}-8=0
Subtract 8 from both sides.
3x^{2}-\frac{49}{3}=0
Subtract 8 from -\frac{25}{3} to get -\frac{49}{3}.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-\frac{49}{3}\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -\frac{49}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-\frac{49}{3}\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-\frac{49}{3}\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{196}}{2\times 3}
Multiply -12 times -\frac{49}{3}.
x=\frac{0±14}{2\times 3}
Take the square root of 196.
x=\frac{0±14}{6}
Multiply 2 times 3.
x=\frac{7}{3}
Now solve the equation x=\frac{0±14}{6} when ± is plus. Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{7}{3}
Now solve the equation x=\frac{0±14}{6} when ± is minus. Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
x=\frac{7}{3} x=-\frac{7}{3}
The equation is now solved.