Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{2}x-\left(3x+\frac{1}{2}x^{3}-\frac{1}{2}x^{2}-7x-x^{3}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
To find the opposite of \frac{1}{2}x^{2}+7x+x^{3}, find the opposite of each term.
x^{2}-\frac{1}{2}x-\left(-4x+\frac{1}{2}x^{3}-\frac{1}{2}x^{2}-x^{3}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Combine 3x and -7x to get -4x.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Combine \frac{1}{2}x^{3} and -x^{3} to get -\frac{1}{2}x^{3}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2\right)^{2}\left(x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Expand \left(-2x^{3}\right)^{2}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2\right)^{2}x^{6}}{\left(2x\right)^{3}}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{\left(2x\right)^{3}}\right)
Calculate -2 to the power of 2 and get 4.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{2^{3}x^{3}}\right)
Expand \left(2x\right)^{3}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{8x^{3}}\right)
Calculate 2 to the power of 3 and get 8.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{x^{3}}{2}\right)
Cancel out 4x^{3} in both numerator and denominator.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{2}\right)
Combine -\frac{1}{2}x^{3} and \frac{x^{3}}{2} to get 0.
x^{2}-\frac{1}{2}x+4x+\frac{1}{2}x^{2}
To find the opposite of -4x-\frac{1}{2}x^{2}, find the opposite of each term.
x^{2}+\frac{7}{2}x+\frac{1}{2}x^{2}
Combine -\frac{1}{2}x and 4x to get \frac{7}{2}x.
\frac{3}{2}x^{2}+\frac{7}{2}x
Combine x^{2} and \frac{1}{2}x^{2} to get \frac{3}{2}x^{2}.
x^{2}-\frac{1}{2}x-\left(3x+\frac{1}{2}x^{3}-\frac{1}{2}x^{2}-7x-x^{3}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
To find the opposite of \frac{1}{2}x^{2}+7x+x^{3}, find the opposite of each term.
x^{2}-\frac{1}{2}x-\left(-4x+\frac{1}{2}x^{3}-\frac{1}{2}x^{2}-x^{3}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Combine 3x and -7x to get -4x.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Combine \frac{1}{2}x^{3} and -x^{3} to get -\frac{1}{2}x^{3}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2\right)^{2}\left(x^{3}\right)^{2}}{\left(2x\right)^{3}}\right)
Expand \left(-2x^{3}\right)^{2}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{\left(-2\right)^{2}x^{6}}{\left(2x\right)^{3}}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{\left(2x\right)^{3}}\right)
Calculate -2 to the power of 2 and get 4.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{2^{3}x^{3}}\right)
Expand \left(2x\right)^{3}.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{4x^{6}}{8x^{3}}\right)
Calculate 2 to the power of 3 and get 8.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{3}-\frac{1}{2}x^{2}+\frac{x^{3}}{2}\right)
Cancel out 4x^{3} in both numerator and denominator.
x^{2}-\frac{1}{2}x-\left(-4x-\frac{1}{2}x^{2}\right)
Combine -\frac{1}{2}x^{3} and \frac{x^{3}}{2} to get 0.
x^{2}-\frac{1}{2}x+4x+\frac{1}{2}x^{2}
To find the opposite of -4x-\frac{1}{2}x^{2}, find the opposite of each term.
x^{2}+\frac{7}{2}x+\frac{1}{2}x^{2}
Combine -\frac{1}{2}x and 4x to get \frac{7}{2}x.
\frac{3}{2}x^{2}+\frac{7}{2}x
Combine x^{2} and \frac{1}{2}x^{2} to get \frac{3}{2}x^{2}.