Solve for x (complex solution)
x=-\frac{\sqrt{195335459}i}{13966}\approx -0-1.000733656i
x=\frac{\sqrt{195335459}i}{13966}\approx 1.000733656i
Graph
Share
Copied to clipboard
2x^{2}+2=\frac{410}{6983\left(1-21\right)}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2=\frac{410}{6983\left(-20\right)}
Subtract 21 from 1 to get -20.
2x^{2}+2=\frac{410}{-139660}
Multiply 6983 and -20 to get -139660.
2x^{2}+2=-\frac{41}{13966}
Reduce the fraction \frac{410}{-139660} to lowest terms by extracting and canceling out 10.
2x^{2}=-\frac{41}{13966}-2
Subtract 2 from both sides.
2x^{2}=-\frac{27973}{13966}
Subtract 2 from -\frac{41}{13966} to get -\frac{27973}{13966}.
x^{2}=\frac{-\frac{27973}{13966}}{2}
Divide both sides by 2.
x^{2}=\frac{-27973}{13966\times 2}
Express \frac{-\frac{27973}{13966}}{2} as a single fraction.
x^{2}=\frac{-27973}{27932}
Multiply 13966 and 2 to get 27932.
x^{2}=-\frac{27973}{27932}
Fraction \frac{-27973}{27932} can be rewritten as -\frac{27973}{27932} by extracting the negative sign.
x=\frac{\sqrt{195335459}i}{13966} x=-\frac{\sqrt{195335459}i}{13966}
The equation is now solved.
2x^{2}+2=\frac{410}{6983\left(1-21\right)}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2=\frac{410}{6983\left(-20\right)}
Subtract 21 from 1 to get -20.
2x^{2}+2=\frac{410}{-139660}
Multiply 6983 and -20 to get -139660.
2x^{2}+2=-\frac{41}{13966}
Reduce the fraction \frac{410}{-139660} to lowest terms by extracting and canceling out 10.
2x^{2}+2+\frac{41}{13966}=0
Add \frac{41}{13966} to both sides.
2x^{2}+\frac{27973}{13966}=0
Add 2 and \frac{41}{13966} to get \frac{27973}{13966}.
x=\frac{0±\sqrt{0^{2}-4\times 2\times \frac{27973}{13966}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and \frac{27973}{13966} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times \frac{27973}{13966}}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times \frac{27973}{13966}}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-\frac{111892}{6983}}}{2\times 2}
Multiply -8 times \frac{27973}{13966}.
x=\frac{0±\frac{2\sqrt{195335459}i}{6983}}{2\times 2}
Take the square root of -\frac{111892}{6983}.
x=\frac{0±\frac{2\sqrt{195335459}i}{6983}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{195335459}i}{13966}
Now solve the equation x=\frac{0±\frac{2\sqrt{195335459}i}{6983}}{4} when ± is plus.
x=-\frac{\sqrt{195335459}i}{13966}
Now solve the equation x=\frac{0±\frac{2\sqrt{195335459}i}{6983}}{4} when ± is minus.
x=\frac{\sqrt{195335459}i}{13966} x=-\frac{\sqrt{195335459}i}{13966}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}