Evaluate
-2x^{2}
Expand
-2x^{2}
Graph
Share
Copied to clipboard
x^{4}-x^{2}-2x-1-\left(x^{2}+x-1\right)\left(x^{2}+x+1\right)+2x\left(x^{2}+1\right)
Use the distributive property to multiply x^{2}+x+1 by x^{2}-x-1 and combine like terms.
x^{4}-x^{2}-2x-1-\left(\left(x^{2}+x\right)^{2}-1\right)+2x\left(x^{2}+1\right)
Consider \left(x^{2}+x-1\right)\left(x^{2}+x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}, where a=x^{2}+x and b=1. Square 1.
x^{4}-x^{2}-2x-1-\left(\left(x^{2}\right)^{2}+2x^{2}x+x^{2}-1\right)+2x\left(x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+x\right)^{2}.
x^{4}-x^{2}-2x-1-\left(x^{4}+2x^{2}x+x^{2}-1\right)+2x\left(x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-x^{2}-2x-1-\left(x^{4}+2x^{3}+x^{2}-1\right)+2x\left(x^{2}+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-x^{2}-2x-1-x^{4}-2x^{3}-x^{2}+1+2x\left(x^{2}+1\right)
To find the opposite of x^{4}+2x^{3}+x^{2}-1, find the opposite of each term.
-x^{2}-2x-1-2x^{3}-x^{2}+1+2x\left(x^{2}+1\right)
Combine x^{4} and -x^{4} to get 0.
-2x^{2}-2x-1-2x^{3}+1+2x\left(x^{2}+1\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}-2x-2x^{3}+2x\left(x^{2}+1\right)
Add -1 and 1 to get 0.
-2x^{2}-2x-2x^{3}+2x^{3}+2x
Use the distributive property to multiply 2x by x^{2}+1.
-2x^{2}-2x+2x
Combine -2x^{3} and 2x^{3} to get 0.
-2x^{2}
Combine -2x and 2x to get 0.
x^{4}-x^{2}-2x-1-\left(x^{2}+x-1\right)\left(x^{2}+x+1\right)+2x\left(x^{2}+1\right)
Use the distributive property to multiply x^{2}+x+1 by x^{2}-x-1 and combine like terms.
x^{4}-x^{2}-2x-1-\left(\left(x^{2}+x\right)^{2}-1\right)+2x\left(x^{2}+1\right)
Consider \left(x^{2}+x-1\right)\left(x^{2}+x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}, where a=x^{2}+x and b=1. Square 1.
x^{4}-x^{2}-2x-1-\left(\left(x^{2}\right)^{2}+2x^{2}x+x^{2}-1\right)+2x\left(x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+x\right)^{2}.
x^{4}-x^{2}-2x-1-\left(x^{4}+2x^{2}x+x^{2}-1\right)+2x\left(x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-x^{2}-2x-1-\left(x^{4}+2x^{3}+x^{2}-1\right)+2x\left(x^{2}+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-x^{2}-2x-1-x^{4}-2x^{3}-x^{2}+1+2x\left(x^{2}+1\right)
To find the opposite of x^{4}+2x^{3}+x^{2}-1, find the opposite of each term.
-x^{2}-2x-1-2x^{3}-x^{2}+1+2x\left(x^{2}+1\right)
Combine x^{4} and -x^{4} to get 0.
-2x^{2}-2x-1-2x^{3}+1+2x\left(x^{2}+1\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}-2x-2x^{3}+2x\left(x^{2}+1\right)
Add -1 and 1 to get 0.
-2x^{2}-2x-2x^{3}+2x^{3}+2x
Use the distributive property to multiply 2x by x^{2}+1.
-2x^{2}-2x+2x
Combine -2x^{3} and 2x^{3} to get 0.
-2x^{2}
Combine -2x and 2x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}