Solve for b (complex solution)
\left\{\begin{matrix}\\b=3\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-3\text{ or }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=3\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-3\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-3\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&b=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-3\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&b=3\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{3}+3x^{2}+bx^{2}+3bx-2x-6=x^{3}+6x^{2}+7x-6
Use the distributive property to multiply x^{2}+bx-2 by x+3.
3x^{2}+bx^{2}+3bx-2x-6=x^{3}+6x^{2}+7x-6-x^{3}
Subtract x^{3} from both sides.
3x^{2}+bx^{2}+3bx-2x-6=6x^{2}+7x-6
Combine x^{3} and -x^{3} to get 0.
bx^{2}+3bx-2x-6=6x^{2}+7x-6-3x^{2}
Subtract 3x^{2} from both sides.
bx^{2}+3bx-2x-6=3x^{2}+7x-6
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
bx^{2}+3bx-6=3x^{2}+7x-6+2x
Add 2x to both sides.
bx^{2}+3bx-6=3x^{2}+9x-6
Combine 7x and 2x to get 9x.
bx^{2}+3bx=3x^{2}+9x-6+6
Add 6 to both sides.
bx^{2}+3bx=3x^{2}+9x
Add -6 and 6 to get 0.
\left(x^{2}+3x\right)b=3x^{2}+9x
Combine all terms containing b.
\frac{\left(x^{2}+3x\right)b}{x^{2}+3x}=\frac{3x\left(x+3\right)}{x^{2}+3x}
Divide both sides by x^{2}+3x.
b=\frac{3x\left(x+3\right)}{x^{2}+3x}
Dividing by x^{2}+3x undoes the multiplication by x^{2}+3x.
b=3
Divide 3x\left(3+x\right) by x^{2}+3x.
x^{3}+3x^{2}+bx^{2}+3bx-2x-6=x^{3}+6x^{2}+7x-6
Use the distributive property to multiply x^{2}+bx-2 by x+3.
3x^{2}+bx^{2}+3bx-2x-6=x^{3}+6x^{2}+7x-6-x^{3}
Subtract x^{3} from both sides.
3x^{2}+bx^{2}+3bx-2x-6=6x^{2}+7x-6
Combine x^{3} and -x^{3} to get 0.
bx^{2}+3bx-2x-6=6x^{2}+7x-6-3x^{2}
Subtract 3x^{2} from both sides.
bx^{2}+3bx-2x-6=3x^{2}+7x-6
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
bx^{2}+3bx-6=3x^{2}+7x-6+2x
Add 2x to both sides.
bx^{2}+3bx-6=3x^{2}+9x-6
Combine 7x and 2x to get 9x.
bx^{2}+3bx=3x^{2}+9x-6+6
Add 6 to both sides.
bx^{2}+3bx=3x^{2}+9x
Add -6 and 6 to get 0.
\left(x^{2}+3x\right)b=3x^{2}+9x
Combine all terms containing b.
\frac{\left(x^{2}+3x\right)b}{x^{2}+3x}=\frac{3x\left(x+3\right)}{x^{2}+3x}
Divide both sides by x^{2}+3x.
b=\frac{3x\left(x+3\right)}{x^{2}+3x}
Dividing by x^{2}+3x undoes the multiplication by x^{2}+3x.
b=3
Divide 3x\left(3+x\right) by x^{2}+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}