Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9x^{2}+8x+8+5x
Combine x^{2} and -10x^{2} to get -9x^{2}.
-9x^{2}+13x+8
Combine 8x and 5x to get 13x.
factor(-9x^{2}+8x+8+5x)
Combine x^{2} and -10x^{2} to get -9x^{2}.
factor(-9x^{2}+13x+8)
Combine 8x and 5x to get 13x.
-9x^{2}+13x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square 13.
x=\frac{-13±\sqrt{169+36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-13±\sqrt{169+288}}{2\left(-9\right)}
Multiply 36 times 8.
x=\frac{-13±\sqrt{457}}{2\left(-9\right)}
Add 169 to 288.
x=\frac{-13±\sqrt{457}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{457}-13}{-18}
Now solve the equation x=\frac{-13±\sqrt{457}}{-18} when ± is plus. Add -13 to \sqrt{457}.
x=\frac{13-\sqrt{457}}{18}
Divide -13+\sqrt{457} by -18.
x=\frac{-\sqrt{457}-13}{-18}
Now solve the equation x=\frac{-13±\sqrt{457}}{-18} when ± is minus. Subtract \sqrt{457} from -13.
x=\frac{\sqrt{457}+13}{18}
Divide -13-\sqrt{457} by -18.
-9x^{2}+13x+8=-9\left(x-\frac{13-\sqrt{457}}{18}\right)\left(x-\frac{\sqrt{457}+13}{18}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{13-\sqrt{457}}{18} for x_{1} and \frac{13+\sqrt{457}}{18} for x_{2}.