Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Use the distributive property to multiply x^{2}+6 by 7-x^{2} and combine like terms.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Subtract 36 from 42 to get 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Subtract x^{4} from both sides.
x^{2}-2x^{4}+6=12x^{2}
Combine -x^{4} and -x^{4} to get -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Subtract 12x^{2} from both sides.
-11x^{2}-2x^{4}+6=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
-2t^{2}-11t+6=0
Substitute t for x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, -11 for b, and 6 for c in the quadratic formula.
t=\frac{11±13}{-4}
Do the calculations.
t=-6 t=\frac{1}{2}
Solve the equation t=\frac{11±13}{-4} when ± is plus and when ± is minus.
x=-\sqrt{6}i x=\sqrt{6}i x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Use the distributive property to multiply x^{2}+6 by 7-x^{2} and combine like terms.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Subtract 36 from 42 to get 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Subtract x^{4} from both sides.
x^{2}-2x^{4}+6=12x^{2}
Combine -x^{4} and -x^{4} to get -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Subtract 12x^{2} from both sides.
-11x^{2}-2x^{4}+6=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
-2t^{2}-11t+6=0
Substitute t for x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, -11 for b, and 6 for c in the quadratic formula.
t=\frac{11±13}{-4}
Do the calculations.
t=-6 t=\frac{1}{2}
Solve the equation t=\frac{11±13}{-4} when ± is plus and when ± is minus.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.