Solve for x (complex solution)
x=\sqrt{6}i\approx 2.449489743i
x=-\sqrt{6}i\approx -0-2.449489743i
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
x=\frac{\sqrt{2}}{2}\approx 0.707106781
Solve for x
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
x=\frac{\sqrt{2}}{2}\approx 0.707106781
Graph
Share
Copied to clipboard
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Use the distributive property to multiply x^{2}+6 by 7-x^{2} and combine like terms.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Subtract 36 from 42 to get 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Subtract x^{4} from both sides.
x^{2}-2x^{4}+6=12x^{2}
Combine -x^{4} and -x^{4} to get -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Subtract 12x^{2} from both sides.
-11x^{2}-2x^{4}+6=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
-2t^{2}-11t+6=0
Substitute t for x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, -11 for b, and 6 for c in the quadratic formula.
t=\frac{11±13}{-4}
Do the calculations.
t=-6 t=\frac{1}{2}
Solve the equation t=\frac{11±13}{-4} when ± is plus and when ± is minus.
x=-\sqrt{6}i x=\sqrt{6}i x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Use the distributive property to multiply x^{2}+6 by 7-x^{2} and combine like terms.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Subtract 36 from 42 to get 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Subtract x^{4} from both sides.
x^{2}-2x^{4}+6=12x^{2}
Combine -x^{4} and -x^{4} to get -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Subtract 12x^{2} from both sides.
-11x^{2}-2x^{4}+6=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
-2t^{2}-11t+6=0
Substitute t for x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, -11 for b, and 6 for c in the quadratic formula.
t=\frac{11±13}{-4}
Do the calculations.
t=-6 t=\frac{1}{2}
Solve the equation t=\frac{11±13}{-4} when ± is plus and when ± is minus.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}