Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+9x-7-5
Combine 3x and 6x to get 9x.
x^{2}+9x-12
Subtract 5 from -7 to get -12.
factor(x^{2}+9x-7-5)
Combine 3x and 6x to get 9x.
factor(x^{2}+9x-12)
Subtract 5 from -7 to get -12.
x^{2}+9x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-12\right)}}{2}
Square 9.
x=\frac{-9±\sqrt{81+48}}{2}
Multiply -4 times -12.
x=\frac{-9±\sqrt{129}}{2}
Add 81 to 48.
x=\frac{\sqrt{129}-9}{2}
Now solve the equation x=\frac{-9±\sqrt{129}}{2} when ± is plus. Add -9 to \sqrt{129}.
x=\frac{-\sqrt{129}-9}{2}
Now solve the equation x=\frac{-9±\sqrt{129}}{2} when ± is minus. Subtract \sqrt{129} from -9.
x^{2}+9x-12=\left(x-\frac{\sqrt{129}-9}{2}\right)\left(x-\frac{-\sqrt{129}-9}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+\sqrt{129}}{2} for x_{1} and \frac{-9-\sqrt{129}}{2} for x_{2}.