( x ^ { 2 } + 2 x y - y ^ { 2 } ) d x + ( y ^ { 2 } - 2 x y - x ^ { 2 } ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\sqrt{2y^{2}}-y\text{ or }x=-\sqrt{2y^{2}}-y\text{ or }x=y\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\sqrt{2}y-y\text{ or }x=-\sqrt{2}y-y\text{ or }x=y\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\sqrt{2y^{2}}-y\text{; }x=y\text{; }x=-\sqrt{2y^{2}}-y\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\left(\sqrt{2}-1\right)y\text{; }x=y\text{; }x=-\left(\sqrt{2}+1\right)y\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{2}d+2xyd-y^{2}d\right)x+\left(y^{2}-2xy-x^{2}\right)dy=0
Use the distributive property to multiply x^{2}+2xy-y^{2} by d.
dx^{3}+2ydx^{2}-y^{2}dx+\left(y^{2}-2xy-x^{2}\right)dy=0
Use the distributive property to multiply x^{2}d+2xyd-y^{2}d by x.
dx^{3}+2ydx^{2}-y^{2}dx+\left(y^{2}d-2xyd-x^{2}d\right)y=0
Use the distributive property to multiply y^{2}-2xy-x^{2} by d.
dx^{3}+2ydx^{2}-y^{2}dx+dy^{3}-2xdy^{2}-x^{2}dy=0
Use the distributive property to multiply y^{2}d-2xyd-x^{2}d by y.
dx^{3}+2ydx^{2}-3y^{2}dx+dy^{3}-x^{2}dy=0
Combine -y^{2}dx and -2xdy^{2} to get -3y^{2}dx.
dx^{3}+ydx^{2}-3y^{2}dx+dy^{3}=0
Combine 2ydx^{2} and -x^{2}dy to get ydx^{2}.
\left(x^{3}+yx^{2}-3y^{2}x+y^{3}\right)d=0
Combine all terms containing d.
\left(x^{3}-3xy^{2}+y^{3}+yx^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by x^{3}+yx^{2}-3y^{2}x+y^{3}.
\left(x^{2}d+2xyd-y^{2}d\right)x+\left(y^{2}-2xy-x^{2}\right)dy=0
Use the distributive property to multiply x^{2}+2xy-y^{2} by d.
dx^{3}+2ydx^{2}-y^{2}dx+\left(y^{2}-2xy-x^{2}\right)dy=0
Use the distributive property to multiply x^{2}d+2xyd-y^{2}d by x.
dx^{3}+2ydx^{2}-y^{2}dx+\left(y^{2}d-2xyd-x^{2}d\right)y=0
Use the distributive property to multiply y^{2}-2xy-x^{2} by d.
dx^{3}+2ydx^{2}-y^{2}dx+dy^{3}-2xdy^{2}-x^{2}dy=0
Use the distributive property to multiply y^{2}d-2xyd-x^{2}d by y.
dx^{3}+2ydx^{2}-3y^{2}dx+dy^{3}-x^{2}dy=0
Combine -y^{2}dx and -2xdy^{2} to get -3y^{2}dx.
dx^{3}+ydx^{2}-3y^{2}dx+dy^{3}=0
Combine 2ydx^{2} and -x^{2}dy to get ydx^{2}.
\left(x^{3}+yx^{2}-3y^{2}x+y^{3}\right)d=0
Combine all terms containing d.
\left(x^{3}-3xy^{2}+y^{3}+yx^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by x^{3}+yx^{2}-3y^{2}x+y^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}