Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+13x+32=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 32}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\times 32}}{2}
Square 13.
x=\frac{-13±\sqrt{169-128}}{2}
Multiply -4 times 32.
x=\frac{-13±\sqrt{41}}{2}
Add 169 to -128.
x=\frac{\sqrt{41}-13}{2}
Now solve the equation x=\frac{-13±\sqrt{41}}{2} when ± is plus. Add -13 to \sqrt{41}.
x=\frac{-\sqrt{41}-13}{2}
Now solve the equation x=\frac{-13±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -13.
x^{2}+13x+32=\left(x-\frac{\sqrt{41}-13}{2}\right)\left(x-\frac{-\sqrt{41}-13}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-13+\sqrt{41}}{2} for x_{1} and \frac{-13-\sqrt{41}}{2} for x_{2}.