Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{2}\left(x^{2}-i\sqrt{5}\right)+i\sqrt{5}\left(x^{2}-i\sqrt{5}\right)\right)\left(x^{2}+\sqrt{5}\right)\left(x^{2}-\sqrt{5}\right)
Use the distributive property to multiply x^{2}+i\sqrt{5} by x^{2}-i\sqrt{5}.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+i\left(x^{2}-i\sqrt{5}\right)\left(\sqrt{5}\right)^{2}\right)\left(x^{2}-\sqrt{5}\right)
Use the distributive property to multiply x^{2}\left(x^{2}-i\sqrt{5}\right)+i\sqrt{5}\left(x^{2}-i\sqrt{5}\right) by x^{2}+\sqrt{5} and combine like terms.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+i\left(x^{2}-i\sqrt{5}\right)\times 5\right)\left(x^{2}-\sqrt{5}\right)
The square of \sqrt{5} is 5.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+5i\left(x^{2}-i\sqrt{5}\right)\right)\left(x^{2}-\sqrt{5}\right)
Multiply i and 5 to get 5i.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-1-i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}\left(\sqrt{5}\right)^{2}+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply \left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+5i\left(x^{2}-i\sqrt{5}\right) by x^{2}-\sqrt{5} and combine like terms.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-1-i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}\times 5+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-5-5i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Multiply -1-i and 5 to get -5-5i.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine \left(-5-5i\right)\left(x^{2}-i\sqrt{5}\right)x^{2} and 5i\left(x^{2}-i\sqrt{5}\right)x^{2} to get -5\left(x^{2}-i\sqrt{5}\right)x^{2}.
x^{8}-i\sqrt{5}x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply x^{2}-i\sqrt{5} by x^{6}.
x^{8}-i\sqrt{5}x^{6}+\left(ix^{2}+\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply i by x^{2}-i\sqrt{5}.
x^{8}-i\sqrt{5}x^{6}+\left(ix^{6}+\sqrt{5}x^{4}\right)\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply ix^{2}+\sqrt{5} by x^{4}.
x^{8}-i\sqrt{5}x^{6}+ix^{6}\sqrt{5}+x^{4}\left(\sqrt{5}\right)^{2}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply ix^{6}+\sqrt{5}x^{4} by \sqrt{5}.
x^{8}-i\sqrt{5}x^{6}+ix^{6}\sqrt{5}+x^{4}\times 5-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
The square of \sqrt{5} is 5.
x^{8}+x^{4}\times 5-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine -i\sqrt{5}x^{6} and ix^{6}\sqrt{5} to get 0.
x^{8}+x^{4}\times 5+\left(-5x^{2}+5i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5 by x^{2}-i\sqrt{5}.
x^{8}+x^{4}\times 5-5x^{4}+5i\sqrt{5}x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5x^{2}+5i\sqrt{5} by x^{2}.
x^{8}+5i\sqrt{5}x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine x^{4}\times 5 and -5x^{4} to get 0.
x^{8}+5i\sqrt{5}x^{2}+\left(-5ix^{2}-5\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5i by x^{2}-i\sqrt{5}.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-5\left(\sqrt{5}\right)^{2}
Use the distributive property to multiply -5ix^{2}-5\sqrt{5} by \sqrt{5}.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-5\times 5
The square of \sqrt{5} is 5.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-25
Multiply -5 and 5 to get -25.
x^{8}-25
Combine 5i\sqrt{5}x^{2} and -5ix^{2}\sqrt{5} to get 0.