Evaluate
x^{8}-25
Share
Copied to clipboard
\left(x^{2}\left(x^{2}-i\sqrt{5}\right)+i\sqrt{5}\left(x^{2}-i\sqrt{5}\right)\right)\left(x^{2}+\sqrt{5}\right)\left(x^{2}-\sqrt{5}\right)
Use the distributive property to multiply x^{2}+i\sqrt{5} by x^{2}-i\sqrt{5}.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+i\left(x^{2}-i\sqrt{5}\right)\left(\sqrt{5}\right)^{2}\right)\left(x^{2}-\sqrt{5}\right)
Use the distributive property to multiply x^{2}\left(x^{2}-i\sqrt{5}\right)+i\sqrt{5}\left(x^{2}-i\sqrt{5}\right) by x^{2}+\sqrt{5} and combine like terms.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+i\left(x^{2}-i\sqrt{5}\right)\times 5\right)\left(x^{2}-\sqrt{5}\right)
The square of \sqrt{5} is 5.
\left(\left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+5i\left(x^{2}-i\sqrt{5}\right)\right)\left(x^{2}-\sqrt{5}\right)
Multiply i and 5 to get 5i.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-1-i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}\left(\sqrt{5}\right)^{2}+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply \left(x^{2}-i\sqrt{5}\right)x^{4}+\left(1+i\right)x^{2}\left(x^{2}-i\sqrt{5}\right)\sqrt{5}+5i\left(x^{2}-i\sqrt{5}\right) by x^{2}-\sqrt{5} and combine like terms.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-1-i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}\times 5+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
The square of \sqrt{5} is 5.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}+\left(-5-5i\right)\left(x^{2}-i\sqrt{5}\right)x^{2}+5i\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Multiply -1-i and 5 to get -5-5i.
\left(x^{2}-i\sqrt{5}\right)x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine \left(-5-5i\right)\left(x^{2}-i\sqrt{5}\right)x^{2} and 5i\left(x^{2}-i\sqrt{5}\right)x^{2} to get -5\left(x^{2}-i\sqrt{5}\right)x^{2}.
x^{8}-i\sqrt{5}x^{6}+i\left(x^{2}-i\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply x^{2}-i\sqrt{5} by x^{6}.
x^{8}-i\sqrt{5}x^{6}+\left(ix^{2}+\sqrt{5}\right)x^{4}\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply i by x^{2}-i\sqrt{5}.
x^{8}-i\sqrt{5}x^{6}+\left(ix^{6}+\sqrt{5}x^{4}\right)\sqrt{5}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply ix^{2}+\sqrt{5} by x^{4}.
x^{8}-i\sqrt{5}x^{6}+ix^{6}\sqrt{5}+x^{4}\left(\sqrt{5}\right)^{2}-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply ix^{6}+\sqrt{5}x^{4} by \sqrt{5}.
x^{8}-i\sqrt{5}x^{6}+ix^{6}\sqrt{5}+x^{4}\times 5-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
The square of \sqrt{5} is 5.
x^{8}+x^{4}\times 5-5\left(x^{2}-i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine -i\sqrt{5}x^{6} and ix^{6}\sqrt{5} to get 0.
x^{8}+x^{4}\times 5+\left(-5x^{2}+5i\sqrt{5}\right)x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5 by x^{2}-i\sqrt{5}.
x^{8}+x^{4}\times 5-5x^{4}+5i\sqrt{5}x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5x^{2}+5i\sqrt{5} by x^{2}.
x^{8}+5i\sqrt{5}x^{2}-5i\left(x^{2}-i\sqrt{5}\right)\sqrt{5}
Combine x^{4}\times 5 and -5x^{4} to get 0.
x^{8}+5i\sqrt{5}x^{2}+\left(-5ix^{2}-5\sqrt{5}\right)\sqrt{5}
Use the distributive property to multiply -5i by x^{2}-i\sqrt{5}.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-5\left(\sqrt{5}\right)^{2}
Use the distributive property to multiply -5ix^{2}-5\sqrt{5} by \sqrt{5}.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-5\times 5
The square of \sqrt{5} is 5.
x^{8}+5i\sqrt{5}x^{2}-5ix^{2}\sqrt{5}-25
Multiply -5 and 5 to get -25.
x^{8}-25
Combine 5i\sqrt{5}x^{2} and -5ix^{2}\sqrt{5} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}