Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
Rationalize the denominator of \frac{2x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
The square of \sqrt{3} is 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
Since \frac{2x\sqrt{3}}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
Rationalize the denominator of \frac{2x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
The square of \sqrt{3} is 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
Since \frac{2x\sqrt{3}}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
Multiply x^{2}+\frac{2x\sqrt{3}+1}{3} and x^{2}+\frac{2x\sqrt{3}+1}{3} to get \left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3}{3}.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
Since \frac{3x^{2}}{3} and \frac{2x\sqrt{3}+1}{3} have the same denominator, add them by adding their numerators.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
To raise \frac{3x^{2}+2x\sqrt{3}+1}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
Square 3x^{2}+2x\sqrt{3}+1.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
The square of \sqrt{3} is 3.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
Multiply 4 and 3 to get 12.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
Combine 12x^{2} and 6x^{2} to get 18x^{2}.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
Calculate 3 to the power of 2 and get 9.