Evaluate
-4x^{4}+\frac{57}{4}-\frac{4}{x^{4}}
Expand
-4x^{4}+\frac{57}{4}-\frac{4}{x^{4}}
Graph
Share
Copied to clipboard
\left(\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\left(\frac{x^{2}x^{2}+1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\left(\frac{x^{4}+1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
Do the multiplications in x^{2}x^{2}+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To raise \frac{x^{4}+1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\left(\frac{x^{2}x^{2}}{x^{2}}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \left(\frac{x^{2}x^{2}-1}{x^{2}}\right)^{2}+\frac{9}{4}
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \left(\frac{x^{4}-1}{x^{2}}\right)^{2}+\frac{9}{4}
Do the multiplications in x^{2}x^{2}-1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \frac{\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}}+\frac{9}{4}
To raise \frac{x^{4}-1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{5\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}}+\frac{9}{4}
Express 5\times \frac{\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}} as a single fraction.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x^{4}+1\right)^{2}}{x^{4}}-\frac{5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand \left(x^{2}\right)^{2}.
\frac{\left(x^{4}+1\right)^{2}-5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
Since \frac{\left(x^{4}+1\right)^{2}}{x^{4}} and \frac{5\left(x^{4}-1\right)^{2}}{x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+2x^{4}+1-5x^{8}+10x^{4}-5}{x^{4}}+\frac{9}{4}
Do the multiplications in \left(x^{4}+1\right)^{2}-5\left(x^{4}-1\right)^{2}.
\frac{-4-4x^{8}+12x^{4}}{x^{4}}+\frac{9}{4}
Combine like terms in x^{8}+2x^{4}+1-5x^{8}+10x^{4}-5.
\frac{4\left(-4-4x^{8}+12x^{4}\right)}{4x^{4}}+\frac{9x^{4}}{4x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{4} and 4 is 4x^{4}. Multiply \frac{-4-4x^{8}+12x^{4}}{x^{4}} times \frac{4}{4}. Multiply \frac{9}{4} times \frac{x^{4}}{x^{4}}.
\frac{4\left(-4-4x^{8}+12x^{4}\right)+9x^{4}}{4x^{4}}
Since \frac{4\left(-4-4x^{8}+12x^{4}\right)}{4x^{4}} and \frac{9x^{4}}{4x^{4}} have the same denominator, add them by adding their numerators.
\frac{-16-16x^{8}+48x^{4}+9x^{4}}{4x^{4}}
Do the multiplications in 4\left(-4-4x^{8}+12x^{4}\right)+9x^{4}.
\frac{-16x^{8}-16+57x^{4}}{4x^{4}}
Combine like terms in -16-16x^{8}+48x^{4}+9x^{4}.
\frac{-16\left(x^{4}-\left(-\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{4x^{4}}
Factor the expressions that are not already factored in \frac{-16x^{8}-16+57x^{4}}{4x^{4}}.
\frac{-4\left(x^{4}-\left(-\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{x^{4}}
Cancel out 4 in both numerator and denominator.
\frac{-4\left(x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{x^{4}}
To find the opposite of -\frac{5}{32}\sqrt{89}+\frac{57}{32}, find the opposite of each term.
\frac{-4\left(x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)\left(x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)}{x^{4}}
To find the opposite of \frac{5}{32}\sqrt{89}+\frac{57}{32}, find the opposite of each term.
\frac{\left(-4x^{4}-\frac{5}{8}\sqrt{89}+\frac{57}{8}\right)\left(x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)}{x^{4}}
Use the distributive property to multiply -4 by x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{25}{256}\left(\sqrt{89}\right)^{2}-\frac{3249}{256}}{x^{4}}
Use the distributive property to multiply -4x^{4}-\frac{5}{8}\sqrt{89}+\frac{57}{8} by x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32} and combine like terms.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{25}{256}\times 89-\frac{3249}{256}}{x^{4}}
The square of \sqrt{89} is 89.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{2225}{256}-\frac{3249}{256}}{x^{4}}
Multiply \frac{25}{256} and 89 to get \frac{2225}{256}.
\frac{-4x^{8}+\frac{57}{4}x^{4}-4}{x^{4}}
Subtract \frac{3249}{256} from \frac{2225}{256} to get -4.
\left(\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\left(\frac{x^{2}x^{2}+1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\left(\frac{x^{4}+1}{x^{2}}\right)^{2}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
Do the multiplications in x^{2}x^{2}+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To raise \frac{x^{4}+1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\left(\frac{x^{2}x^{2}}{x^{2}}-\frac{1}{x^{2}}\right)^{2}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \left(\frac{x^{2}x^{2}-1}{x^{2}}\right)^{2}+\frac{9}{4}
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \left(\frac{x^{4}-1}{x^{2}}\right)^{2}+\frac{9}{4}
Do the multiplications in x^{2}x^{2}-1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-5\times \frac{\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}}+\frac{9}{4}
To raise \frac{x^{4}-1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{5\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}}+\frac{9}{4}
Express 5\times \frac{\left(x^{4}-1\right)^{2}}{\left(x^{2}\right)^{2}} as a single fraction.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x^{4}+1\right)^{2}}{x^{4}}-\frac{5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand \left(x^{2}\right)^{2}.
\frac{\left(x^{4}+1\right)^{2}-5\left(x^{4}-1\right)^{2}}{x^{4}}+\frac{9}{4}
Since \frac{\left(x^{4}+1\right)^{2}}{x^{4}} and \frac{5\left(x^{4}-1\right)^{2}}{x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+2x^{4}+1-5x^{8}+10x^{4}-5}{x^{4}}+\frac{9}{4}
Do the multiplications in \left(x^{4}+1\right)^{2}-5\left(x^{4}-1\right)^{2}.
\frac{-4-4x^{8}+12x^{4}}{x^{4}}+\frac{9}{4}
Combine like terms in x^{8}+2x^{4}+1-5x^{8}+10x^{4}-5.
\frac{4\left(-4-4x^{8}+12x^{4}\right)}{4x^{4}}+\frac{9x^{4}}{4x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{4} and 4 is 4x^{4}. Multiply \frac{-4-4x^{8}+12x^{4}}{x^{4}} times \frac{4}{4}. Multiply \frac{9}{4} times \frac{x^{4}}{x^{4}}.
\frac{4\left(-4-4x^{8}+12x^{4}\right)+9x^{4}}{4x^{4}}
Since \frac{4\left(-4-4x^{8}+12x^{4}\right)}{4x^{4}} and \frac{9x^{4}}{4x^{4}} have the same denominator, add them by adding their numerators.
\frac{-16-16x^{8}+48x^{4}+9x^{4}}{4x^{4}}
Do the multiplications in 4\left(-4-4x^{8}+12x^{4}\right)+9x^{4}.
\frac{-16x^{8}-16+57x^{4}}{4x^{4}}
Combine like terms in -16-16x^{8}+48x^{4}+9x^{4}.
\frac{-16\left(x^{4}-\left(-\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{4x^{4}}
Factor the expressions that are not already factored in \frac{-16x^{8}-16+57x^{4}}{4x^{4}}.
\frac{-4\left(x^{4}-\left(-\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{x^{4}}
Cancel out 4 in both numerator and denominator.
\frac{-4\left(x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)\left(x^{4}-\left(\frac{5}{32}\sqrt{89}+\frac{57}{32}\right)\right)}{x^{4}}
To find the opposite of -\frac{5}{32}\sqrt{89}+\frac{57}{32}, find the opposite of each term.
\frac{-4\left(x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)\left(x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)}{x^{4}}
To find the opposite of \frac{5}{32}\sqrt{89}+\frac{57}{32}, find the opposite of each term.
\frac{\left(-4x^{4}-\frac{5}{8}\sqrt{89}+\frac{57}{8}\right)\left(x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32}\right)}{x^{4}}
Use the distributive property to multiply -4 by x^{4}+\frac{5}{32}\sqrt{89}-\frac{57}{32}.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{25}{256}\left(\sqrt{89}\right)^{2}-\frac{3249}{256}}{x^{4}}
Use the distributive property to multiply -4x^{4}-\frac{5}{8}\sqrt{89}+\frac{57}{8} by x^{4}-\frac{5}{32}\sqrt{89}-\frac{57}{32} and combine like terms.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{25}{256}\times 89-\frac{3249}{256}}{x^{4}}
The square of \sqrt{89} is 89.
\frac{-4x^{8}+\frac{57}{4}x^{4}+\frac{2225}{256}-\frac{3249}{256}}{x^{4}}
Multiply \frac{25}{256} and 89 to get \frac{2225}{256}.
\frac{-4x^{8}+\frac{57}{4}x^{4}-4}{x^{4}}
Subtract \frac{3249}{256} from \frac{2225}{256} to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}