Evaluate
\left(x-\frac{1}{x}\right)^{4}
Expand
x^{4}-4x^{2}+6-\frac{4}{x^{2}}+\frac{1}{x^{4}}
Graph
Share
Copied to clipboard
\left(\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\left(\frac{x^{2}x^{2}+1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\left(\frac{x^{4}+1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
Do the multiplications in x^{2}x^{2}+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\left(x+\frac{1}{x}\right)^{2}+12
To raise \frac{x^{4}+1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\left(\frac{xx}{x}+\frac{1}{x}\right)^{2}+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \left(\frac{xx+1}{x}\right)^{2}+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \left(\frac{x^{2}+1}{x}\right)^{2}+12
Do the multiplications in xx+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}}+12
To raise \frac{x^{2}+1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{4\left(x^{2}+1\right)^{2}}{x^{2}}+12
Express 4\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}} as a single fraction.
\frac{\left(x^{4}+1\right)^{2}}{x^{4}}-\frac{4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}}+12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}\right)^{2} and x^{2} is x^{4}. Multiply \frac{4\left(x^{2}+1\right)^{2}}{x^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{4}+1\right)^{2}-4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}}+12
Since \frac{\left(x^{4}+1\right)^{2}}{x^{4}} and \frac{4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+2x^{4}+1-4x^{6}-8x^{4}-4x^{2}}{x^{4}}+12
Do the multiplications in \left(x^{4}+1\right)^{2}-4\left(x^{2}+1\right)^{2}x^{2}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}}+12
Combine like terms in x^{8}+2x^{4}+1-4x^{6}-8x^{4}-4x^{2}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}}+\frac{12x^{4}}{x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{x^{4}}{x^{4}}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}+12x^{4}}{x^{4}}
Since \frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}} and \frac{12x^{4}}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{8}+1+6x^{4}-4x^{6}-4x^{2}}{x^{4}}
Combine like terms in 1+x^{8}-6x^{4}-4x^{6}-4x^{2}+12x^{4}.
\left(\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\left(\frac{x^{2}x^{2}+1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\left(\frac{x^{4}+1}{x^{2}}\right)^{2}-4\left(x+\frac{1}{x}\right)^{2}+12
Do the multiplications in x^{2}x^{2}+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\left(x+\frac{1}{x}\right)^{2}+12
To raise \frac{x^{4}+1}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\left(\frac{xx}{x}+\frac{1}{x}\right)^{2}+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \left(\frac{xx+1}{x}\right)^{2}+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \left(\frac{x^{2}+1}{x}\right)^{2}+12
Do the multiplications in xx+1.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-4\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}}+12
To raise \frac{x^{2}+1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}+1\right)^{2}}{\left(x^{2}\right)^{2}}-\frac{4\left(x^{2}+1\right)^{2}}{x^{2}}+12
Express 4\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}} as a single fraction.
\frac{\left(x^{4}+1\right)^{2}}{x^{4}}-\frac{4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}}+12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}\right)^{2} and x^{2} is x^{4}. Multiply \frac{4\left(x^{2}+1\right)^{2}}{x^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{4}+1\right)^{2}-4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}}+12
Since \frac{\left(x^{4}+1\right)^{2}}{x^{4}} and \frac{4\left(x^{2}+1\right)^{2}x^{2}}{x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+2x^{4}+1-4x^{6}-8x^{4}-4x^{2}}{x^{4}}+12
Do the multiplications in \left(x^{4}+1\right)^{2}-4\left(x^{2}+1\right)^{2}x^{2}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}}+12
Combine like terms in x^{8}+2x^{4}+1-4x^{6}-8x^{4}-4x^{2}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}}+\frac{12x^{4}}{x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{x^{4}}{x^{4}}.
\frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}+12x^{4}}{x^{4}}
Since \frac{1+x^{8}-6x^{4}-4x^{6}-4x^{2}}{x^{4}} and \frac{12x^{4}}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{8}+1+6x^{4}-4x^{6}-4x^{2}}{x^{4}}
Combine like terms in 1+x^{8}-6x^{4}-4x^{6}-4x^{2}+12x^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}