Evaluate
yx^{4}
Expand
yx^{4}
Share
Copied to clipboard
\left(x^{-3}\times \frac{1}{y}\right)^{-2}\times \frac{1}{x^{2}y^{1}}
Use the rules of exponents to simplify the expression.
\left(x^{-3}\right)^{-2}\times \left(\frac{1}{y}\right)^{-2}\times \frac{1}{x^{2}}\times \frac{1}{y^{1}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(x^{-3}\right)^{-2}\times \frac{1}{x^{2}}\times \left(\frac{1}{y}\right)^{-2}\times \frac{1}{y^{1}}
Use the Commutative Property of Multiplication.
x^{-3\left(-2\right)}x^{2\left(-1\right)}y^{-\left(-2\right)}\times \frac{1}{y}
To raise a power to another power, multiply the exponents.
x^{6}x^{2\left(-1\right)}y^{-\left(-2\right)}\times \frac{1}{y}
Multiply -3 times -2.
x^{6}x^{-2}y^{-\left(-2\right)}\times \frac{1}{y}
Multiply 2 times -1.
x^{6}x^{-2}y^{2}\times \frac{1}{y}
Multiply -1 times -2.
x^{6-2}y^{2-1}
To multiply powers of the same base, add their exponents.
x^{4}y^{2-1}
Add the exponents 6 and -2.
x^{4}y^{1}
Add the exponents 2 and -1.
x^{4}y
For any term t, t^{1}=t.
\left(x^{-3}\times \frac{1}{y}\right)^{-2}\times \frac{1}{x^{2}y^{1}}
Use the rules of exponents to simplify the expression.
\left(x^{-3}\right)^{-2}\times \left(\frac{1}{y}\right)^{-2}\times \frac{1}{x^{2}}\times \frac{1}{y^{1}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(x^{-3}\right)^{-2}\times \frac{1}{x^{2}}\times \left(\frac{1}{y}\right)^{-2}\times \frac{1}{y^{1}}
Use the Commutative Property of Multiplication.
x^{-3\left(-2\right)}x^{2\left(-1\right)}y^{-\left(-2\right)}\times \frac{1}{y}
To raise a power to another power, multiply the exponents.
x^{6}x^{2\left(-1\right)}y^{-\left(-2\right)}\times \frac{1}{y}
Multiply -3 times -2.
x^{6}x^{-2}y^{-\left(-2\right)}\times \frac{1}{y}
Multiply 2 times -1.
x^{6}x^{-2}y^{2}\times \frac{1}{y}
Multiply -1 times -2.
x^{6-2}y^{2-1}
To multiply powers of the same base, add their exponents.
x^{4}y^{2-1}
Add the exponents 6 and -2.
x^{4}y^{1}
Add the exponents 2 and -1.
x^{4}y
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}