Evaluate
\sqrt{x}-\sqrt{y}
Differentiate w.r.t. x
\frac{1}{2\sqrt{x}}
Share
Copied to clipboard
\left(x^{\frac{1}{4}}x^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{1}{4}}y^{\frac{1}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
Use the distributive property to multiply x^{\frac{1}{4}}+y^{\frac{1}{4}} by x^{\frac{1}{8}}+y^{\frac{1}{8}}.
\left(x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{1}{4}}y^{\frac{1}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
\left(x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{3}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{3}{8}}x^{\frac{1}{8}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}x^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
Use the distributive property to multiply x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{3}{8}} by x^{\frac{1}{8}}-y^{\frac{1}{8}}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}x^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
x^{\frac{1}{2}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
Combine -x^{\frac{3}{8}}y^{\frac{1}{8}} and x^{\frac{3}{8}}y^{\frac{1}{8}} to get 0.
x^{\frac{1}{2}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
Combine -x^{\frac{1}{4}}y^{\frac{1}{4}} and y^{\frac{1}{4}}x^{\frac{1}{4}} to get 0.
x^{\frac{1}{2}}-y^{\frac{1}{2}}
Combine -y^{\frac{3}{8}}x^{\frac{1}{8}} and y^{\frac{3}{8}}x^{\frac{1}{8}} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}