Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{\frac{1}{4}}x^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{1}{4}}y^{\frac{1}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
Use the distributive property to multiply x^{\frac{1}{4}}+y^{\frac{1}{4}} by x^{\frac{1}{8}}+y^{\frac{1}{8}}.
\left(x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{1}{4}}y^{\frac{1}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
\left(x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{3}{8}}\right)\left(x^{\frac{1}{8}}-y^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{3}{8}}x^{\frac{1}{8}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}x^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
Use the distributive property to multiply x^{\frac{3}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}+y^{\frac{1}{4}}x^{\frac{1}{8}}+y^{\frac{3}{8}} by x^{\frac{1}{8}}-y^{\frac{1}{8}}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{1}{4}}y^{\frac{1}{8}}x^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}\left(y^{\frac{1}{8}}\right)^{2}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}\left(x^{\frac{1}{8}}\right)^{2}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{1}{4}}x^{\frac{1}{8}}y^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{3}{8}}y^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
x^{\frac{1}{2}}-x^{\frac{3}{8}}y^{\frac{1}{8}}+x^{\frac{3}{8}}y^{\frac{1}{8}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
x^{\frac{1}{2}}-x^{\frac{1}{4}}y^{\frac{1}{4}}+y^{\frac{1}{4}}x^{\frac{1}{4}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
Combine -x^{\frac{3}{8}}y^{\frac{1}{8}} and x^{\frac{3}{8}}y^{\frac{1}{8}} to get 0.
x^{\frac{1}{2}}-y^{\frac{3}{8}}x^{\frac{1}{8}}+y^{\frac{3}{8}}x^{\frac{1}{8}}-y^{\frac{1}{2}}
Combine -x^{\frac{1}{4}}y^{\frac{1}{4}} and y^{\frac{1}{4}}x^{\frac{1}{4}} to get 0.
x^{\frac{1}{2}}-y^{\frac{1}{2}}
Combine -y^{\frac{3}{8}}x^{\frac{1}{8}} and y^{\frac{3}{8}}x^{\frac{1}{8}} to get 0.