Solve for x
x=\frac{y-2}{3}
Solve for y
y=3x+2
Graph
Share
Copied to clipboard
x+y-\left(-2x\right)=2y-2
Combine 9x and -11x to get -2x.
x+y+2x=2y-2
The opposite of -2x is 2x.
3x+y=2y-2
Combine x and 2x to get 3x.
3x=2y-2-y
Subtract y from both sides.
3x=y-2
Combine 2y and -y to get y.
\frac{3x}{3}=\frac{y-2}{3}
Divide both sides by 3.
x=\frac{y-2}{3}
Dividing by 3 undoes the multiplication by 3.
x+y-\left(-2x\right)=2y-2
Combine 9x and -11x to get -2x.
x+y+2x=2y-2
The opposite of -2x is 2x.
3x+y=2y-2
Combine x and 2x to get 3x.
3x+y-2y=-2
Subtract 2y from both sides.
3x-y=-2
Combine y and -2y to get -y.
-y=-2-3x
Subtract 3x from both sides.
-y=-3x-2
The equation is in standard form.
\frac{-y}{-1}=\frac{-3x-2}{-1}
Divide both sides by -1.
y=\frac{-3x-2}{-1}
Dividing by -1 undoes the multiplication by -1.
y=3x+2
Divide -2-3x by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}