Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

x+y-\left(-3ix+iy\right)=\frac{2+i}{1-i}
Use the distributive property to multiply -3x+y by i.
x+y+3ix-iy=\frac{2+i}{1-i}
To find the opposite of -3ix+iy, find the opposite of each term.
\left(1+3i\right)x+y-iy=\frac{2+i}{1-i}
Combine x and 3ix to get \left(1+3i\right)x.
\left(1+3i\right)x+\left(1-i\right)y=\frac{2+i}{1-i}
Combine y and -iy to get \left(1-i\right)y.
\left(1+3i\right)x+\left(1-i\right)y=\frac{\left(2+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{2+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(1+3i\right)x+\left(1-i\right)y=\frac{1+3i}{2}
Do the multiplications in \frac{\left(2+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(1+3i\right)x+\left(1-i\right)y=\frac{1}{2}+\frac{3}{2}i
Divide 1+3i by 2 to get \frac{1}{2}+\frac{3}{2}i.
\left(1+3i\right)x=\frac{1}{2}+\frac{3}{2}i-\left(1-i\right)y
Subtract \left(1-i\right)y from both sides.
\left(1+3i\right)x=\frac{1}{2}+\frac{3}{2}i+\left(-1+i\right)y
Multiply -1 and 1-i to get -1+i.
\left(1+3i\right)x=\left(-1+i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(1+3i\right)x}{1+3i}=\frac{\left(-1+i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{1+3i}
Divide both sides by 1+3i.
x=\frac{\left(-1+i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{1+3i}
Dividing by 1+3i undoes the multiplication by 1+3i.
x=\left(\frac{1}{5}+\frac{2}{5}i\right)y+\frac{1}{2}
Divide \frac{1}{2}+\frac{3}{2}i+\left(-1+i\right)y by 1+3i.
x+y-\left(-3ix+iy\right)=\frac{2+i}{1-i}
Use the distributive property to multiply -3x+y by i.
x+y+3ix-iy=\frac{2+i}{1-i}
To find the opposite of -3ix+iy, find the opposite of each term.
\left(1+3i\right)x+y-iy=\frac{2+i}{1-i}
Combine x and 3ix to get \left(1+3i\right)x.
\left(1+3i\right)x+\left(1-i\right)y=\frac{2+i}{1-i}
Combine y and -iy to get \left(1-i\right)y.
\left(1+3i\right)x+\left(1-i\right)y=\frac{\left(2+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{2+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(1+3i\right)x+\left(1-i\right)y=\frac{1+3i}{2}
Do the multiplications in \frac{\left(2+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(1+3i\right)x+\left(1-i\right)y=\frac{1}{2}+\frac{3}{2}i
Divide 1+3i by 2 to get \frac{1}{2}+\frac{3}{2}i.
\left(1-i\right)y=\frac{1}{2}+\frac{3}{2}i-\left(1+3i\right)x
Subtract \left(1+3i\right)x from both sides.
\left(1-i\right)y=\frac{1}{2}+\frac{3}{2}i+\left(-1-3i\right)x
Multiply -1 and 1+3i to get -1-3i.
\left(1-i\right)y=\left(-1-3i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(1-i\right)y}{1-i}=\frac{\left(-1-3i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{1-i}
Divide both sides by 1-i.
y=\frac{\left(-1-3i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{1-i}
Dividing by 1-i undoes the multiplication by 1-i.
y=\left(1-2i\right)x+\left(-\frac{1}{2}+i\right)
Divide \frac{1}{2}+\frac{3}{2}i+\left(-1-3i\right)x by 1-i.