Evaluate
0
Factor
0
Share
Copied to clipboard
x^{2}-y^{2}-\left(x-y\right)\left(x+y\right)
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(x^{2}-y^{2}\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-x^{2}-\left(-y^{2}\right)
To find the opposite of x^{2}-y^{2}, find the opposite of each term.
x^{2}-y^{2}-x^{2}+y^{2}
The opposite of -y^{2} is y^{2}.
-y^{2}+y^{2}
Combine x^{2} and -x^{2} to get 0.
0
Combine -y^{2} and y^{2} to get 0.
\left(1-1\right)\left(\text{Indeterminate}+\text{Indeterminate}+\text{Indeterminate}+\text{Indeterminate}\right)
Factor out common term 1-1 by using distributive property.
\text{Indeterminate}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}