Evaluate
2x\left(x+y\right)
Expand
2x^{2}+2xy
Share
Copied to clipboard
x^{2}-y^{2}+\left(-x-y\right)^{2}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}+\left(-x\right)^{2}-2\left(-x\right)y+y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-y\right)^{2}.
x^{2}-y^{2}+x^{2}-2\left(-x\right)y+y^{2}
Calculate -x to the power of 2 and get x^{2}.
x^{2}-y^{2}+x^{2}+2xy+y^{2}
Multiply -2 and -1 to get 2.
2x^{2}-y^{2}+2xy+y^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2xy
Combine -y^{2} and y^{2} to get 0.
x^{2}-y^{2}+\left(-x-y\right)^{2}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}+\left(-x\right)^{2}-2\left(-x\right)y+y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-y\right)^{2}.
x^{2}-y^{2}+x^{2}-2\left(-x\right)y+y^{2}
Calculate -x to the power of 2 and get x^{2}.
x^{2}-y^{2}+x^{2}+2xy+y^{2}
Multiply -2 and -1 to get 2.
2x^{2}-y^{2}+2xy+y^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2xy
Combine -y^{2} and y^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}